State estimation for jump markov nonlinear systems of unknown measurement data covariance

[1]  Feng Ding,et al.  Iterative Identification of Hammerstein Parameter Varying Systems With Parameter Uncertainties Based on the Variational Bayesian Approach , 2020, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[2]  Simon J. Godsill,et al.  Bayesian Intent Prediction in Object Tracking Using Bridging Distributions , 2015, IEEE Transactions on Cybernetics.

[3]  Simo Särkkä,et al.  Non-linear noise adaptive Kalman filtering via variational Bayes , 2013, 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP).

[4]  Shunyi Zhao,et al.  Risk‐sensitive filtering for nonlinear Markov jump systems on the basis of particle approximation , 2012 .

[5]  Hongye Su,et al.  Quantized Feedback Control of Fuzzy Markov Jump Systems , 2019, IEEE Transactions on Cybernetics.

[6]  Yonggang Zhang,et al.  A Novel Adaptive Kalman Filter With Inaccurate Process and Measurement Noise Covariance Matrices , 2018, IEEE Transactions on Automatic Control.

[7]  George W. Irwin,et al.  Multiple model bootstrap filter for maneuvering target tracking , 2000, IEEE Trans. Aerosp. Electron. Syst..

[8]  Dan Simon,et al.  Kalman Filtering with Uncertain Noise Covariances , 2004 .

[9]  Quan Pan,et al.  A finite-horizon adaptive Kalman filter for linear systems with unknown disturbances , 2004, Signal Process..

[10]  Fei Liu,et al.  State estimation in non-linear markov jump systems with uncertain switching probabilities , 2012 .

[11]  Simo Särkkä,et al.  Recursive Noise Adaptive Kalman Filtering by Variational Bayesian Approximations , 2009, IEEE Transactions on Automatic Control.

[12]  Jitendra K. Tugnait,et al.  A detection-estimation scheme for state estimation in switching environments , 1979, Autom..

[13]  Peng Shi,et al.  Bayesian State Estimation for Markovian Jump Systems: Employing Recursive Steps and Pseudocodes , 2019, IEEE Systems, Man, and Cybernetics Magazine.

[14]  Fang Deng,et al.  A Fast Distributed Variational Bayesian Filtering for Multisensor LTV System With Non-Gaussian Noise , 2019, IEEE Transactions on Cybernetics.

[15]  Fangfei Li,et al.  Event-Triggered Risk-Sensitive State Estimation for Hidden Markov Models , 2019, IEEE Transactions on Automatic Control.

[16]  Choon Ki Ahn,et al.  Robust Simultaneous Fault Estimation and Nonfragile Output Feedback Fault-Tolerant Control for Markovian Jump Systems , 2019, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[17]  Yanjun Ma,et al.  Multiple-Model State Estimation Based on Variational Bayesian Inference , 2019, IEEE Transactions on Automatic Control.

[18]  R. Mehra Approaches to adaptive filtering , 1972 .

[19]  Yingmin Jia,et al.  Brief paper: adaptive filtering for jump markov systems with unknown noise covariance , 2013 .

[20]  D. Magill Optimal adaptive estimation of sampled stochastic processes , 1965 .

[21]  Peng Shi,et al.  Robust Hinfinity fuzzy filter design for uncertain nonlinear singularly perturbed systems with Markovian jumps: An LMI approach , 2007, Inf. Sci..

[22]  Jean-Marc Le Lann,et al.  Model-based fault diagnosis for hybrid systems: Application on chemical processes , 2009, Comput. Chem. Eng..

[23]  Biao Huang,et al.  Bayesian state estimation on finite horizons: The case of linear state-space model , 2017, Autom..

[24]  Václav Smídl,et al.  Variational Bayesian Filtering , 2008, IEEE Transactions on Signal Processing.

[25]  Hongjiu Yang,et al.  Adaptive Fuzzy Tracking Control for Strict-Feedback Markov Jumping Nonlinear Systems With Actuator Failures and Unmodeled Dynamics , 2020, IEEE Transactions on Cybernetics.

[26]  Jinde Cao,et al.  Stability Analysis for Continuous-Time Switched Systems With Stochastic Switching Signals , 2018, IEEE Transactions on Automatic Control.

[27]  Fangfei Li,et al.  Secure remote state estimation against linear man-in-the-middle attacks using watermarking , 2020, Autom..

[28]  Peng Shi,et al.  Input—Output Approach to Control for Fuzzy Markov Jump Systems With Time-Varying Delays and Uncertain Packet Dropout Rate , 2015, IEEE Transactions on Cybernetics.

[29]  H.A.P. Blom,et al.  Exact Bayesian and particle filtering of stochastic hybrid systems , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[30]  Peng Qin,et al.  Data Fusion Method and Probabilistic Pairing Approach in Elastic Constants Measurement by Resonance Ultrasound Spectroscopy , 2020, IEEE Transactions on Instrumentation and Measurement.

[31]  Y. Bar-Shalom,et al.  The interacting multiple model algorithm for systems with Markovian switching coefficients , 1988 .

[32]  Vikram Krishnamurthy,et al.  An improvement to the interacting multiple model (IMM) algorithm , 2001, IEEE Trans. Signal Process..

[33]  Yuriy S. Shmaliy,et al.  Probabilistic Monitoring of Correlated Sensors for Nonlinear Processes in State Space , 2020, IEEE Transactions on Industrial Electronics.

[34]  H. Blom An efficient filter for abruptly changing systems , 1984 .

[35]  Ling Shi,et al.  Event-triggered minimax state estimation with a relative entropy constraint , 2019, Autom..

[36]  Shunyi Zhao,et al.  Trial-and-error or avoiding a guess? Initialization of the Kalman filter , 2020, Autom..

[37]  Chenglin Wen,et al.  Adaptive Quantized Estimation Fusion Using Strong Tracking Filtering and Variational Bayesian , 2020, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[38]  Hiromitsu Kumamoto,et al.  Random sampling approach to state estimation in switching environments , 1977, Autom..

[39]  Y. Jia,et al.  State estimation for jump Markov linear systems by variational Bayesian approximation , 2012 .

[40]  Xiaoming Hu,et al.  An optimization approach to adaptive Kalman filtering , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[41]  Henry Leung,et al.  Robust Consensus Nonlinear Information Filter for Distributed Sensor Networks With Measurement Outliers , 2019, IEEE Transactions on Cybernetics.

[42]  Fei Liu,et al.  Detection and Diagnosis of Multiple Faults With Uncertain Modeling Parameters , 2017, IEEE Transactions on Control Systems Technology.

[43]  J. Mendel,et al.  Maximum-Likelihood Deconvolution: A Journey into Model-Based Signal Processing , 1990 .

[44]  K. Ito,et al.  On State Estimation in Switching Environments , 1970 .

[45]  Hans Driessen,et al.  Multiple-model multiple-hypothesis filter for tracking maneuvering targets , 2001, SPIE Optics + Photonics.

[46]  Peng Shi,et al.  Real-Time Optimal State Estimation of Multi-DOF Industrial Systems Using FIR Filtering , 2017, IEEE Transactions on Industrial Informatics.