MOTIVATION
Nuclear Magnetic Resonance (NMR) spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common methods used to assign and estimate concentrations of metabolites involve either an expert manual peak fitting or extra pre-processing steps, such as peak alignment and binning. Peak fitting is very time consuming and is subject to human error. Conversely, alignment and binning can introduce artefacts and limit immediate biological interpretation of models.
RESULTS
We present the Bayesian automated metabolite analyser for NMR spectra (BATMAN), an R package that deconvolutes peaks from one-dimensional NMR spectra, automatically assigns them to specific metabolites from a target list and obtains concentration estimates. The Bayesian model incorporates information on characteristic peak patterns of metabolites and is able to account for shifts in the position of peaks commonly seen in NMR spectra of biological samples. It applies a Markov chain Monte Carlo algorithm to sample from a joint posterior distribution of the model parameters and obtains concentration estimates with reduced error compared with conventional numerical integration and comparable to manual deconvolution by experienced spectroscopists.
AVAILABILITY AND IMPLEMENTATION
http://www1.imperial.ac.uk/medicine/people/t.ebbels/
CONTACT
t.ebbels@imperial.ac.uk.
[1]
David S Wishart,et al.
Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra
,
2011,
Journal of Biomolecular NMR.
[2]
Erin E. Carlson,et al.
Targeted profiling: quantitative analysis of 1H NMR metabolomics data.
,
2006,
Analytical chemistry.
[3]
William J. Astle,et al.
A Bayesian Model of NMR Spectra for the Deconvolution and Quantification of Metabolites in Complex Biological Mixtures
,
2011,
1105.2204.
[4]
David S. Wishart,et al.
HMDB: a knowledgebase for the human metabolome
,
2008,
Nucleic Acids Res..
[5]
Gregory D. Tredwell,et al.
Between-person comparison of metabolite fitting for NMR-based quantitative metabolomics.
,
2011,
Analytical chemistry.
[6]
Cheng Zheng,et al.
Identification and quantification of metabolites in 1H NMR spectra by Bayesian model selection
,
2011,
Bioinform..