Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing

[1]  Benjamin P. Kleinstiver,et al.  Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants , 2020, Science.

[2]  David R. Liu,et al.  Base editor correction of COL7A1 in recessive dystrophic epidermolysis bullosa patient-derived fibroblasts and iPSCs. , 2020, The Journal of investigative dermatology.

[3]  Tony P. Huang,et al.  Continuous evolution of SpCas9 variants compatible with non-G PAMs , 2020, Nature Biotechnology.

[4]  W. Hauswirth,et al.  Long-Term Structural Outcomes of Late-Stage RPE65 Gene Therapy. , 2020, Molecular therapy : the journal of the American Society of Gene Therapy.

[5]  David R. Liu,et al.  Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses , 2019, Nature Biomedical Engineering.

[6]  Chang Sik Cho,et al.  CRISPR-Cas9–mediated therapeutic editing of Rpe65 ameliorates the disease phenotypes in a mouse model of Leber congenital amaurosis , 2019, Science Advances.

[7]  Kathleen A. Marshall,et al.  Efficacy, Safety, and Durability of Voretigene Neparvovec-rzyl in RPE65 Mutation-Associated Inherited Retinal Dystrophy: Results of Phase 1 and 3 Trials. , 2019, Ophthalmology.

[8]  Yuan Ping,et al.  Off-Targeting of Base Editors: BE3 but not ABE induces substantial off-target single nucleotide variants , 2019, Signal Transduction and Targeted Therapy.

[9]  Z. Zhong,et al.  Seven novel variants expand the spectrum of RPE65-related Leber congenital amaurosis in the Chinese population , 2019, Molecular vision.

[10]  Q. Gao,et al.  Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice , 2019, Science.

[11]  Jin-Soo Kim,et al.  CRISPR-Pass: Gene Rescue of Nonsense Mutations Using Adenine Base Editors , 2019, bioRxiv.

[12]  Andrzej T. Foik,et al.  Detailed Visual Cortical Responses Generated by Retinal Sheet Transplants in Rats with Severe Retinal Degeneration , 2018, The Journal of Neuroscience.

[13]  E. Traboulsi,et al.  Gene therapy for RPE65-related retinal disease , 2018, Ophthalmic genetics.

[14]  David R. Liu,et al.  Base editing: precision chemistry on the genome and transcriptome of living cells , 2018, Nature Reviews Genetics.

[15]  M. Robinson,et al.  Treatment of a metabolic liver disease by in vivo genome base editing in adult mice , 2018, Nature Medicine.

[16]  Li Li,et al.  In utero CRISPR-mediated therapeutic editing of metabolic genes , 2018, Nature Medicine.

[17]  David R. Liu,et al.  Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction , 2018, Nature Biotechnology.

[18]  Eugene Chung,et al.  Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy , 2018, Nature Biotechnology.

[19]  J. Joung,et al.  Corrigendum: CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR–Cas9 nuclease off-targets , 2018, Nature Methods.

[20]  David R. Liu,et al.  Evolved Cas9 variants with broad PAM compatibility and high DNA specificity , 2018, Nature.

[21]  Rick L. Stevens,et al.  A communal catalogue reveals Earth’s multiscale microbial diversity , 2017, Nature.

[22]  M. Golczak,et al.  Impact of LCA-Associated E14L LRAT Mutation on Protein Stability and Retinoid Homeostasis. , 2017, Biochemistry.

[23]  Heikki Tanila,et al.  Vision in laboratory rodents—Tools to measure it and implications for behavioral research , 2017, Behavioural Brain Research.

[24]  J. Joung,et al.  CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets , 2017, Nature Methods.

[25]  D. Vollrath,et al.  Assessment of Murine Retinal Function by Electroretinography. , 2017, Bio-protocol.

[26]  D. Feldser,et al.  Systematic In Vivo Inactivation of Chromatin-Regulating Enzymes Identifies Setd2 as a Potent Tumor Suppressor in Lung Adenocarcinoma. , 2017, Cancer research.

[27]  David R. Liu,et al.  Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage , 2016, Nature.

[28]  Tudor C. Badea,et al.  A system to measure the Optokinetic and Optomotor response in mice , 2015, Journal of Neuroscience Methods.

[29]  A. J. Roman,et al.  Improvement and decline in vision with gene therapy in childhood blindness. , 2015, The New England journal of medicine.

[30]  S. E. Barker,et al.  Long-term effect of gene therapy on Leber's congenital amaurosis. , 2015, The New England journal of medicine.

[31]  Randall J. Platt,et al.  Therapeutic genome editing: prospects and challenges , 2015, Nature Medicine.

[32]  Steven Lin,et al.  Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery , 2014, eLife.

[33]  B. Staumont DNA double-strand break repair pathway choice , 2014 .

[34]  J. Doudna,et al.  The new frontier of genome engineering with CRISPR-Cas9 , 2014, Science.

[35]  Feng Gu,et al.  Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells , 2014, Scientific Reports.

[36]  E. Lander,et al.  Development and Applications of CRISPR-Cas9 for Genome Engineering , 2014, Cell.

[37]  N. Brunetti‐Pierri,et al.  Retinal transduction profiles by high-capacity viral vectors , 2014, Gene Therapy.

[38]  Christopher M. Vockley,et al.  RNA-guided gene activation by CRISPR-Cas9-based transcription factors , 2013, Nature Methods.

[39]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[40]  K. Palczewski,et al.  Chemistry of the Retinoid (Visual) Cycle , 2013, Chemical reviews.

[41]  Feng Zhang,et al.  CRISPR-assisted editing of bacterial genomes , 2013, Nature Biotechnology.

[42]  Feng Zhang,et al.  rNA-guided editing of bacterial genomes using crisPr-cas systems , 2016 .

[43]  Alexander Sumaroka,et al.  Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement , 2013, Proceedings of the National Academy of Sciences.

[44]  S. Boulton,et al.  Playing the end game: DNA double-strand break repair pathway choice. , 2012, Molecular cell.

[45]  Jianhua Cang,et al.  Visual Receptive Field Properties of Neurons in the Superficial Superior Colliculus of the Mouse , 2010, The Journal of Neuroscience.

[46]  K. Palczewski,et al.  Importance of Membrane Structural Integrity for RPE65 Retinoid Isomerization Activity* , 2010, The Journal of Biological Chemistry.

[47]  R. Roepman,et al.  Leber congenital amaurosis: Genes, proteins and disease mechanisms , 2008, Progress in Retinal and Eye Research.

[48]  A. J. Roman,et al.  Safety of recombinant adeno-associated virus type 2-RPE65 vector delivered by ocular subretinal injection. , 2006, Molecular therapy : the journal of the American Society of Gene Therapy.

[49]  W. Hauswirth,et al.  Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. , 2005, Molecular therapy : the journal of the American Society of Gene Therapy.

[50]  W. Hauswirth,et al.  Retinal degeneration 12 (rd12): a new, spontaneously arising mouse model for human Leber congenital amaurosis (LCA). , 2005, Molecular vision.

[51]  T. Kitamura,et al.  Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. , 2003, Experimental hematology.

[52]  A. D. den Hollander,et al.  Molecular genetics of Leber congenital amaurosis. , 2002, Human molecular genetics.

[53]  Jean Bennett,et al.  Gene therapy restores vision in a canine model of childhood blindness , 2001, Nature Genetics.

[54]  D. Bok,et al.  Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle , 1998, Nature Genetics.

[55]  U. Dräger,et al.  Depth segregation of retinal ganglion cells projecting to mouse superior colliculus , 1985, The Journal of comparative neurology.

[56]  J F Glenn,et al.  Prospects and challenges. , 1967, The Journal of urology.

[57]  P. Rossini,et al.  Nanotechnology and Regenerative Medicine Retinal Origin of Electrically Evoked Potentials in Response to Transcorneal Alternating Current Stimulation in the Rat , 2015 .

[58]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.