Temperature-dependent properties of CoFeB/MgO thin films: Experiments versus simulations

CoFeB/MgO heterostructures are a promising candidate for an integral component of spintronic devices due to their high magnetic anisotropy, low Gilbert damping, and excellent magnetoresistive properties. Here, we present experimental measurements and atomistic simulations of the temperature and CoFeB thickness dependence of spontaneous magnetization and magnetic anisotropy in CoFeB/MgO ultrathin films. We find that the thermal fluctuations are different between the bulk and interface magnetizations, and that the interfacial anisotropy originates from a two-site anisotropic exchange interaction. These effects lead to a complex temperature and thickness dependence of the magnetic properties critical to device operation and stability at elevated temperatures.

[1]  Sze Ter Lim,et al.  Magnetization dynamics and its scattering mechanism in thin CoFeB films with interfacial anisotropy , 2017, Proceedings of the National Academy of Sciences.

[2]  R. Chantrell,et al.  Quantitative simulation of temperature-dependent magnetization dynamics and equilibrium properties of elemental ferromagnets , 2014, 1409.7397.

[3]  Shoji Ikeda,et al.  Properties of magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure down to junction diameter of 11 nm , 2014 .

[4]  S. Kanai Magnetic anisotropy in Ta/CoFeB/MgO investigated by x-ray magnetic circular dichroism and first-principles calculation , 2014 .

[5]  Kang L. Wang,et al.  Temperature dependence of the voltage-controlled perpendicular anisotropy in nanoscale MgO|CoFeB|Ta magnetic tunnel junctions , 2014 .

[6]  M. O. A. Ellis,et al.  Atomistic spin model simulations of magnetic nanomaterials , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  R. P. Robertazzi,et al.  Spin-torque switching efficiency in CoFeB-MgO based tunnel junctions , 2013 .

[8]  H. Ohno,et al.  Transmission electron microscopy study on the effect of various capping layers on CoFeB/MgO/CoFeB pseudo spin valves annealed at different temperatures , 2012 .

[9]  H. Ohno,et al.  Origin of the collapse of tunnel magnetoresistance at high annealing temperature in CoFeB/MgO perpendicular magnetic tunnel junctions , 2011 .

[10]  H. Ohno,et al.  Tunnel Magnetoresistance Properties of Double MgO-Barrier Magnetic Tunnel Junctions With Different Free-Layer Alloy Compositions and Structures , 2011, IEEE Transactions on Magnetics.

[11]  R. Chantrell,et al.  Temperature dependence of the effective anisotropies in magnetic nanoparticles with Néel surface anisotropy , 2010 .

[12]  A. Manchon,et al.  First-principles investigation of the very large perpendicular magnetic anisotropy at Fe|MgO and Co|MgO interfaces , 2010, 1011.5667.

[13]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[14]  Hideo Ohno,et al.  Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures , 2010 .

[15]  T. Ito,et al.  Electric field effects on magnetocrystalline anisotropy in ferromagnetic Fe monolayers , 2010 .

[16]  Bernard Rodmacq,et al.  Pt/Co/oxide and oxide/Co/Pt electrodes for perpendicular magnetic tunnel junctions , 2009 .

[17]  Bernard Rodmacq,et al.  Analysis of oxygen induced anisotropy crossover in Pt/Co/MOx trilayers , 2008 .

[18]  D. Sellmyer,et al.  Finite-temperature anisotropy of magnetic alloys , 2006 .

[19]  K. Tsunekawa,et al.  230% room temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions , 2005, INTERMAG Asia 2005. Digests of the IEEE International Magnetics Conference, 2005..

[20]  H. Ohno,et al.  Dependence of Giant Tunnel Magnetoresistance of Sputtered CoFeB/MgO/CoFeB Magnetic Tunnel Junctions on MgO Barrier Thickness and Annealing Temperature , 2005, cond-mat/0504051.

[21]  U. Nowak,et al.  Temperature-dependent magnetic properties of FePt: Effective spin Hamiltonian model , 2004, physics/0411020.

[22]  T. Miyazaki,et al.  Chemical-order-dependent magnetic anisotropy and exchange stiffness constant of FePt (001) epitaxial films , 2002 .

[23]  Bernard Rodmacq,et al.  Crossover from in-plane to perpendicular anisotropy in Pt/CoFe/AlOx sandwiches as a function of Al oxidation: A very accurate control of the oxidation of tunnel barriers , 2002 .

[24]  A. Enders,et al.  Growth, structure, electronic, and magnetic properties of MgO/Fe(001) bilayers and Fe/MgO/Fe(001) trilayers , 2001 .

[25]  D. Hinzke,et al.  Monte Carlo simulation of magnetization switching in a Heisenberg model for small ferromagnetic particles , 1999 .

[26]  J. Dankovicová Czech , 1997, Journal of the International Phonetic Association.

[27]  Garanin Self-consistent Gaussian approximation for classical spin systems: Thermodynamics. , 1996, Physical review. B, Condensed matter.

[28]  H. Callen,et al.  The present status of the temperature dependence of magnetocrystalline anisotropy, and the l(l+1)2 power law , 1966 .

[29]  U. Nowak,et al.  Calculation of the Temperature Dependence of Magnetic Anisotropy , 2010 .

[30]  I. Turek,et al.  Exchange Interactions at Surfaces of Fe, Co, and Gd , 2003 .