Approximate Duals of Gabor-Like Frames Based on Realizable Multi-Window Spline-Type Constructions

In the multi-window spline-type spaces, the fast computationof the realizable dual frame could be achieved througha constructive reformulation of the biorthogonal relations. Inthis paper, we extend the results obtained in spline-type spaces, for the constructive realization of an approximate dual Gabor-likeframe. We demonstrate the advantages of this approachin both flexibility and speed. The method allows in a naturalway to handle non standard Gabor constructions like nonuniformity in frequency and the reductions of the number ofused modulations. Experimental tests are presented in supportof the algorithm.

[1]  Marcin Bownik The Structure of Shift-Invariant Subspaces of L2(Rn)☆ , 2000 .

[2]  R. DeVore,et al.  The Structure of Finitely Generated Shift-Invariant Spaces in , 1992 .

[3]  A. Ron A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution , 1989 .

[4]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[5]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[6]  Yonina C. Eldar,et al.  A Constructive Inversion Framework for Twisted Convolution , 2005, math/0511209.

[7]  Hans G. Feichtinger,et al.  Approximate dual Gabor atoms via the adjoint lattice method , 2014, Adv. Comput. Math..

[8]  Yonina C. Eldar,et al.  Dual Gabor frames: theory and computational aspects , 2005, IEEE Transactions on Signal Processing.

[9]  Nicki Holighaus,et al.  The Large Time-Frequency Analysis Toolbox 2.0 , 2013, CMMR.

[10]  Hans G. Feichtinger,et al.  Quasi-interpolation in the Fourier algebra , 2007, J. Approx. Theory.

[11]  C. Micchelli,et al.  On linear independence for integer translates of a finite number of functions , 1993, Proceedings of the Edinburgh Mathematical Society.

[12]  Marcin Bownik,et al.  The structure of shift–modulation invariant spaces: The rational case , 2007 .

[13]  Akram Aldroubi,et al.  Nonuniform Sampling and Reconstruction in Shift-Invariant Spaces , 2001, SIAM Rev..

[14]  Peter G. Casazza,et al.  Weyl-Heisenberg frames, translation invariant systems and the Walnut representation , 1999, math/9910169.

[15]  J. Benedetto,et al.  The Theory of Multiresolution Analysis Frames and Applications to Filter Banks , 1998 .

[16]  H. Feichtinger SPLINE-TYPE SPACES IN GABOR ANALYSIS , 2002 .

[17]  Hans G. Feichtinger,et al.  Constructive realization of dual systems for generators of multi-window spline-type spaces , 2010, J. Comput. Appl. Math..

[18]  H. Reiter Classical Harmonic Analysis and Locally Compact Groups , 1968 .