Structural stabilization of linear 2D discrete systems using equivalence transformations

We consider stability and stabilization issues for linear two-dimensional (2D) discrete systems. We give a general definition of structural stability for all linear 2D discrete systems which coincides with the existing definitions in the particular cases of the classical Roesser and Fornasini–Marchesini discrete models. We study the preservation of the structural stability by equivalence transformations in the sense of the algebraic analysis approach to linear systems theory. This allows us to use recent works both on the stabilization of linear 2D Roesser models and on the equivalence of linear multidimensional systems in order to develop a stabilization method for linear 2D discrete Fornasini–Marchesini models.

[1]  Jan C. Willems,et al.  From time series to linear system - Part I. Finite dimensional linear time invariant systems , 1986, Autom..

[2]  Alan J. Laub,et al.  The LMI control toolbox , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[3]  Tsit Yuen Lam,et al.  Lectures on modules and rings , 1998 .

[4]  Alban Quadrat,et al.  Effective algorithms for parametrizing linear control systems over Ore algebras , 2005, Applicable Algebra in Engineering, Communication and Computing.

[5]  Zhiping Lin,et al.  Stability and stabilisation of linear multidimensional discrete systems in the frequency domain , 2013, Int. J. Control.

[6]  Dan E. Dudgeon,et al.  Multidimensional Digital Signal Processing , 1983 .

[7]  A. Quadrat,et al.  Every internally stabilizable multidimensional system admits a doubly coprime factorization , 2004 .

[8]  Michael J. Grimble,et al.  Iterative Learning Control for Deterministic Systems , 1992 .

[9]  Krzysztof Galkowski,et al.  Multidimensional Signals, Circuits and Systems , 2001 .

[10]  J. Rotman An Introduction to Homological Algebra , 1979 .

[11]  R. Bracewell Two-dimensional imaging , 1994 .

[12]  A. Quadrat,et al.  OreModules: A Symbolic Package for the Study of Multidimensional Linear Systems , 2007 .

[13]  Geir E. Dullerud,et al.  Distributed control design for spatially interconnected systems , 2003, IEEE Trans. Autom. Control..

[14]  J. Shanks,et al.  Stability criterion for N -dimensional digital filters , 1973 .

[15]  T. Kaczorek Singular general model of 2-D systems and its solution , 1988 .

[16]  B. Malgrange,et al.  Systèmes différentiels à coefficients constants , 1964 .

[17]  Rudolf Rabenstein,et al.  Partial differential equation models for continuous multidimensional systems , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[18]  Peter H. Bauer,et al.  Realization using the Roesser model for implementations in distributed grid sensor networks , 2011, 49th IEEE Conference on Decision and Control (CDC).

[19]  Tadeusz Kaczorek,et al.  Equivalence and Similarity for Singular 2-D Linear Systems , 1991 .

[20]  Olivier Bachelier,et al.  Exponential stability for 2D systems: the linear case , 2012 .

[21]  Ulrich Oberst,et al.  Multidimensional constant linear systems , 1990, EUROCAST.

[22]  L. Pandolfi Exponential stability of 2-D systems , 1984 .

[23]  Thomas Cluzeau,et al.  A constructive algebraic analysis approach to the equivalence of multidimensional linear systems , 2015, 2015 IEEE 9th International Workshop on Multidimensional (nD) Systems (nDS).

[24]  Sankar Basu,et al.  Multidimensional causal, stable, perfect reconstruction filter banks , 1994, Proceedings of 1st International Conference on Image Processing.

[25]  E. Zerz On strict system equivalence for multidimensional systems , 2000 .

[26]  E. Rogers,et al.  Stability and control of differential linear repetitive processes using an LMI setting , 2003, IEEE Trans. Circuits Syst. II Express Briefs.

[27]  N. Bose Applied multidimensional systems theory , 1982 .

[28]  Alban Quadrat,et al.  OreMorphisms : A Homological Algebraic Package for Factoring, Reducing and Decomposing Linear Functional Systems , 2009 .

[29]  H. Rosenbrock,et al.  State-space and multivariable theory, , 1970 .

[30]  Fabrice Rouillier,et al.  Computer algebra methods for testing the structural stability of multidimensional systems , 2015, 2015 IEEE 9th International Workshop on Multidimensional (nD) Systems (nDS).

[31]  Ulrich Oberst,et al.  Stability and Stabilization of Multidimensional Input/Output Systems , 2006, SIAM J. Control. Optim..

[32]  Jan C. Willems,et al.  From time series to linear system - Part III: Approximate modelling , 1987, Autom..

[33]  Peter H. Bauer,et al.  Realization Using the Fornasini-Marchesini Model for Implementations in Distributed Grid Sensor Networks , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[34]  A. Quadrat An introduction to constructive algebraic analysis and its applications , 2010 .

[35]  K. Galkowski The Fornasini-Marchesini and the Roesser models: algebraic methods for recasting , 1996, IEEE Trans. Autom. Control..

[36]  T. Kaczorek Two-Dimensional Linear Systems , 1985 .

[37]  Alban Quadrat,et al.  Equivalences of Linear Functional Systems , 2016 .

[38]  Krzysztof Galkowski,et al.  Control Systems Theory and Applications for Linear Repetitive Processes - Recent Progress and Open Research Questions , 2007 .

[39]  Eric Rogers,et al.  Behaviours, modules, and duality , 2001 .

[40]  Ulrich Oberst,et al.  The asymptotic stability of stable and time-autonomous discrete multidimensional behaviors , 2013 .

[41]  R. Roesser A discrete state-space model for linear image processing , 1975 .

[42]  T. Kaczorek The singular general model of 2D systems and its solution , 1988 .

[43]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[44]  K. Galkowski,et al.  LMI approach to state-feedback stabilization of multidimensional systems , 2003 .

[45]  J. Kurek,et al.  The general state-space model for a two-dimensional linear digital system , 1985 .

[46]  P. Fuhrmann On strict system equivalence and similarity , 1977 .

[47]  Wojciech Paszke,et al.  LMI Stability Conditions for 2D Roesser Models , 2016, IEEE Transactions on Automatic Control.

[48]  Wojciech Paszke,et al.  State feedback structural stabilization of 2D discrete Roesser models , 2015, 2015 IEEE 9th International Workshop on Multidimensional (nD) Systems (nDS).

[49]  Ulrich Oberst,et al.  A survey of ( BIBO ) stability and ( proper ) stabilization of multidimensional input / output systems , 2007 .

[50]  T. Cluzeau,et al.  Factoring and decomposing a class of linear functional systems , 2008 .

[51]  Arkadi Nemirovski,et al.  Lmi Control Toolbox For Use With Matlab , 2014 .

[52]  Thomas Cluzeau,et al.  A constructive version of Fitting's theorem on isomorphisms and equivalences of linear systems , 2011, The 2011 International Workshop on Multidimensional (nD) Systems.

[53]  M. S. Boudellioua Strict system equivalence of 2D linear discrete state space models , 2012 .

[54]  Ettore Fornasini,et al.  Doubly-indexed dynamical systems: State-space models and structural properties , 1978, Mathematical systems theory.

[55]  Jan C. Willems,et al.  From time series to linear system - Part II. Exact modelling , 1986, Autom..

[56]  Ulrich Oberst,et al.  Multidimensional BIBO stability and Jury’s conjecture , 2008, Math. Control. Signals Syst..

[57]  Maria Elena Valcher,et al.  Characteristic cones and stability properties of two-dimensional autonomous behaviors , 2000 .

[58]  Andreas Antoniou,et al.  Two-Dimensional Digital Filters , 2020 .

[59]  Alban Quadrat,et al.  Isomorphisms and Serre's reduction of linear systems , 2013 .