Hierarchical mixture of experts and diagnostic modeling approach to reduce hydrologic model structural uncertainty

[1]  Murugesu Sivapalan,et al.  Comparative diagnostic analysis of runoff generation processes in Oklahoma DMIP2 basins: The Blue River and the Illinois River , 2012 .

[2]  Hubert H. G. Savenije,et al.  A framework to assess the realism of model structures using hydrological signatures , 2012 .

[3]  Martyn P. Clark,et al.  Spatial variability of hydrological processes and model structure diagnostics in a 50 km2 catchment , 2014 .

[4]  Hubert H. G. Savenije,et al.  Process consistency in models: The importance of system signatures, expert knowledge, and process complexity , 2014 .

[5]  J. Freer,et al.  Benchmarking observational uncertainties for hydrology: rainfall, river discharge and water quality , 2012 .

[6]  Neil McIntyre,et al.  Towards reduced uncertainty in conceptual rainfall‐runoff modelling: dynamic identifiability analysis , 2003 .

[7]  D. Kavetski,et al.  Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters , 2006 .

[8]  M. Trosset,et al.  Bayesian recursive parameter estimation for hydrologic models , 2001 .

[9]  Martyn P. Clark,et al.  Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models , 2008 .

[10]  D. Kavetski,et al.  Confronting Input Uncertainty in Environmental Modelling , 2013 .

[11]  Ashish Sharma,et al.  Modeling the catchment via mixtures: Issues of model specification and validation , 2005 .

[12]  Patrick M. Reed,et al.  When are multiobjective calibration trade‐offs in hydrologic models meaningful? , 2012 .

[13]  Yuqiong Liu,et al.  Reconciling theory with observations: elements of a diagnostic approach to model evaluation , 2008 .

[14]  H. Kling,et al.  Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios , 2012 .

[15]  Murugesu Sivapalan,et al.  Predicting space–time variability of hourly streamflow and the role of climate seasonality: Mahurangi Catchment, New Zealand , 2003 .

[16]  A. Shamseldin,et al.  Methods for combining the outputs of different rainfall–runoff models , 1997 .

[17]  Tyler Smith,et al.  Modeling residual hydrologic errors with Bayesian inference , 2015 .

[18]  Cajo J. F. ter Braak,et al.  Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation , 2008 .

[19]  Murugesu Sivapalan,et al.  Functional approach to exploring climatic and landscape controls of runoff generation: 1. Behavioral constraints on runoff volume , 2014 .

[20]  Ming Ye,et al.  Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff , 2003 .

[21]  Soroosh Sorooshian,et al.  Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops , 2006 .

[22]  J. Freer,et al.  Consistency between hydrological models and field observations: linking processes at the hillslope scale to hydrological responses at the watershed scale , 2009 .

[23]  M. Sivapalan,et al.  Improving model structure and reducing parameter uncertainty in conceptual water balance models through the use of auxiliary data , 2007 .

[24]  Dong-Jun Seo,et al.  Towards the characterization of streamflow simulation uncertainty through multimodel ensembles , 2004 .

[25]  George Kuczera,et al.  Bayesian analysis of input uncertainty in hydrological modeling: 2. Application , 2006 .

[26]  Michael I. Jordan,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1994, Neural Computation.

[27]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[28]  Murugesu Sivapalan,et al.  Model diagnostic analysis of seasonal switching of runoff generation mechanisms in the Blue River basin, Oklahoma , 2012 .

[29]  Hoshin Vijai Gupta,et al.  Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling , 2009 .

[30]  Rolf Weingartner,et al.  An introduction to the hydrological modelling system PREVAH and its pre- and post-processing-tools , 2009, Environ. Model. Softw..

[31]  Dmitri Kavetski,et al.  Pursuing the method of multiple working hypotheses for hydrological modeling , 2011 .

[32]  Hoshin Vijai Gupta,et al.  Large-sample hydrology: a need to balance depth with breadth , 2013 .

[33]  S. Uhlenbrook,et al.  Prediction uncertainty of conceptual rainfall-runoff models caused by problems in identifying model parameters and structure , 1999 .

[34]  Göran Lindström,et al.  Interpretation of runoff processes in hydrological modelling—experience from the HBV approach , 2015 .

[35]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information , 1998 .

[36]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[37]  Ashish Sharma,et al.  Specifying a hierarchical mixture of experts for hydrologic modeling: Gating function variable selection , 2013 .

[38]  David Huard,et al.  A Bayesian perspective on input uncertainty in model calibration: Application to hydrological model “abc” , 2006 .

[39]  A. Raftery,et al.  Using Bayesian Model Averaging to Calibrate Forecast Ensembles , 2005 .

[40]  Ximing Cai,et al.  Detecting human interferences to low flows through base flow recession analysis , 2009 .

[41]  B. Choudhury,et al.  Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model , 1999 .

[42]  S. Sorooshian,et al.  Multi-model ensemble hydrologic prediction using Bayesian model averaging , 2007 .

[43]  Martyn P. Clark,et al.  Hydrological field data from a modeller's perspective: Part 1. Diagnostic tests for model structure , 2011 .

[44]  J. Vrugt,et al.  A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non‐Gaussian errors , 2010 .

[45]  Johannes Cullmann,et al.  Joint application of event-based calibration and dynamic identifiability analysis in rainfall–runoff modelling: implications for model parametrisation , 2008 .

[46]  Bruce A. Robinson,et al.  Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging , 2007 .

[47]  Karsten Schulz,et al.  The influence of lateral snow redistribution processes on snow melt and sublimation in alpine regions , 2012 .

[48]  D. Higdon,et al.  Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling , 2009 .

[49]  George Kuczera,et al.  Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors , 2010 .

[50]  M. Clark,et al.  Unraveling uncertainties in hydrologic model calibration: Addressing the problem of compensatory parameters , 2006 .

[51]  Lucy Marshall,et al.  Towards dynamic catchment modelling: a Bayesian hierarchical mixtures of experts framework , 2007 .

[52]  George Kuczera,et al.  Pitfalls and improvements in the joint inference of heteroscedasticity and autocorrelation in hydrological model calibration , 2013 .

[53]  Henrik Madsen,et al.  An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation , 2004 .

[54]  George Kuczera,et al.  Comparison of joint versus postprocessor approaches for hydrological uncertainty estimation accounting for error autocorrelation and heteroscedasticity , 2014 .

[55]  L. Phil Graham,et al.  On the scale problem in hydrological modelling , 1998 .

[56]  Göran Lindström,et al.  Spillway design floods in Sweden: I. New guidelines , 1992 .

[57]  Tyler Smith,et al.  Development of a formal likelihood function for improved Bayesian inference of ephemeral catchments , 2010 .

[58]  Jan Seibert,et al.  Teaching hydrological modeling with a user-friendly catchment-runoff-model software package , 2012 .