Quantum Queuing Delay

Queuing delay is an essential topic in the design of quantum networks. This paper introduces a tractable model for analyzing the queuing delay of quantum data, referred to as quantum queuing delay (QQD). The model employs a dynamic programming formalism and accounts for practical aspects such as the finite memory size. Using this model, we develop a cognitive-memory-based policy for memory management and show that this policy can decrease the average queuing delay exponentially with respect to memory size. Such a significant reduction can be traced back to the use of entanglement, a peculiar quantum phenomenon that has no classical counterpart. Numerical results validate the theoretical analysis and demonstrate the near-optimal performance of the developed policy.

[1]  Julio A. de Oliveira Filho,et al.  A link layer protocol for quantum networks , 2019, SIGCOMM.

[2]  Lajos Hanzo,et al.  Satellite-Based Continuous-Variable Quantum Communications: State-of-the-Art and a Predictive Outlook , 2017, IEEE Communications Surveys & Tutorials.

[3]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[4]  Andreas Reiserer,et al.  Cavity-based quantum networks with single atoms and optical photons , 2014, 1412.2889.

[5]  M. Neuts,et al.  Introduction to Queueing Theory (2nd ed.). , 1983 .

[6]  Maris Ozols,et al.  Simulating Large Quantum Circuits on a Small Quantum Computer. , 2019, Physical review letters.

[7]  Jieping Ye,et al.  A quantum network of clocks , 2013, Nature Physics.

[8]  Anthony Ephremides,et al.  A simple dynamic routing problem , 1980 .

[9]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[10]  Moe Z. Win,et al.  Optimal Remote Entanglement Distribution , 2020, IEEE Journal on Selected Areas in Communications.

[11]  Moe Z. Win,et al.  Structured near-optimal channel-adapted quantum error correction , 2007, 0708.3658.

[12]  J. Kaufman,et al.  Blocking in a Shared Resource Environment , 1981, IEEE Trans. Commun..

[13]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[14]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[15]  Michal Lipson,et al.  Scalable Integration of Long-Lived Quantum Memories into a Photonic Circuit , 2014, Physical Review X.

[16]  Michael Epping,et al.  Multi-partite entanglement can speed up quantum key distribution in networks , 2016, 1612.05585.

[17]  Dimitri P. Bertsekas,et al.  Data networks (2nd ed.) , 1992 .

[18]  R. N. Schouten,et al.  Unconditional quantum teleportation between distant solid-state quantum bits , 2014, Science.

[19]  E. Knill,et al.  Experimental purification of two-atom entanglement , 2006, Nature.

[20]  B. V. Gnedenko,et al.  Introduction to queueing theory (2nd ed) , 1989 .

[21]  G M D'Ariano,et al.  Using entanglement improves the precision of quantum measurements. , 2001, Physical review letters.

[22]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[23]  Laszlo Gyongyosi,et al.  Decentralized Base-Graph Routing for the Quantum Internet , 2018, Physical Review A.

[24]  Liang Jiang,et al.  Optimal approach to quantum communication using dynamic programming , 2007, Proceedings of the National Academy of Sciences.

[25]  Marco Chiani,et al.  Secure Key Throughput of Intermittent Trusted-Relay QKD Protocols , 2018, 2018 IEEE Globecom Workshops (GC Wkshps).

[26]  Moe Z. Win,et al.  Channel-Adapted Quantum Error Correction for the Amplitude Damping Channel , 2007, IEEE Transactions on Information Theory.

[27]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[28]  S. Barnett,et al.  Optimal sequential measurements for bipartite state discrimination , 2017, 1704.01409.

[29]  Angela Sara Cacciapuoti,et al.  Toward the Quantum Internet: A Directional-dependent Noise Model for Quantum Signal Processing , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[30]  J. Little A Proof for the Queuing Formula: L = λW , 1961 .

[31]  C. Macchiavello,et al.  Multipartite entanglement in quantum algorithms , 2010, 1007.4179.

[32]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[33]  Chiara Macchiavello,et al.  Usefulness of entanglement-assisted quantum metrology , 2016, 1603.03993.

[34]  Prabha Mandayam,et al.  The Classical Capacity of a Quantum Erasure Queue-Channel , 2019, 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).

[35]  Qifu Tyler Sun,et al.  Design of Quantum LDPC Codes From Quadratic Residue Sets , 2018, IEEE Transactions on Communications.

[36]  Moe Z. Win,et al.  Optimum quantum error recovery using semidefinite programming , 2007 .

[37]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[38]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[39]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[40]  M. Win,et al.  Adaptive recurrence quantum entanglement distillation for two-Kraus-operator channels , 2017, Physical Review A.

[41]  Andrea Conti,et al.  Quantum Pulse Position Modulation with Photon-Added Coherent States , 2019, 2019 IEEE Globecom Workshops (GC Wkshps).

[42]  S. Lloyd,et al.  Quantum-enhanced positioning and clock synchronization , 2001, Nature.

[43]  J. Oppenheim,et al.  Measurement of time of arrival in quantum mechanics , 1997, quant-ph/9709031.

[44]  Prem Kumar,et al.  Infrastructure for the quantum internet , 2004, CCRV.

[45]  Jonathan P Dowling,et al.  Quantum technology: the second quantum revolution , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[46]  P. C. Humphreys,et al.  Entanglement distillation between solid-state quantum network nodes , 2017, Science.

[47]  Prabha Mandayam,et al.  Qubits through Queues: The Capacity of Channels with Waiting Time Dependent Errors , 2018, 2019 National Conference on Communications (NCC).

[48]  Leandros Tassiulas,et al.  Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks , 1992 .

[49]  Lorenzo Maccone,et al.  Using entanglement against noise in quantum metrology. , 2014, Physical review letters.