Assessing the Pathogenicity, Penetrance, and Expressivity of Putative Disease-Causing Variants in a Population Setting

[1]  Samuel E. Jones,et al.  Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms , 2019, Nature Communications.

[2]  K. Van Steen,et al.  The search for gene-gene interactions in genome-wide association studies: challenges in abundance of methods, practical considerations, and biological interpretation. , 2018, Annals of translational medicine.

[3]  Samuel E. Jones,et al.  Genome-wide association analyses of chronotype in 697,828 individuals provides new insights into circadian rhythms in humans and links to disease , 2018, bioRxiv.

[4]  Amalio Telenti,et al.  Identification of misclassified ClinVar variants using disease population prevalence , 2016, bioRxiv.

[5]  J. Tyrrell,et al.  Mosaic Turner syndrome shows reduced phenotypic penetrance in an adult population study compared to clinically ascertained cases , 2018 .

[6]  P. Stankiewicz,et al.  An estimation of the prevalence of genomic disorders using chromosomal microarray data , 2018, Journal of Human Genetics.

[7]  Joshua C. Denny,et al.  Phenotype risk scores identify patients with unrecognized Mendelian disease patterns , 2018, Science.

[8]  David R. FitzPatrick,et al.  Paediatric genomics: diagnosing rare disease in children , 2018, Nature Reviews Genetics.

[9]  Maili Liu,et al.  Structural insights into the impact of two holoprosencephaly-related mutations on human TGIF1 homeodomain. , 2018, Biochemical and biophysical research communications.

[10]  Birgit Funke,et al.  Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: recommendations by ClinGen’s Inherited Cardiomyopathy Expert Panel , 2018, Genetics in Medicine.

[11]  Christopher M. DeBoever,et al.  Medical relevance of protein-truncating variants across 337,205 individuals in the UK Biobank study , 2017, bioRxiv.

[12]  J. Tyrrell,et al.  Phenotypes associated with female X chromosome aneuploidy in UK Biobank: an unselected, adult, population-based cohort , 2017, bioRxiv.

[13]  P. Donnelly,et al.  Genome-wide genetic data on ~500,000 UK Biobank participants , 2017, bioRxiv.

[14]  P. Visscher,et al.  10 Years of GWAS Discovery: Biology, Function, and Translation. , 2017, American journal of human genetics.

[15]  E. Tolosa,et al.  Penetrance estimate of LRRK2 p.G2019S mutation in individuals of non‐Ashkenazi Jewish ancestry , 2017, Movement disorders : official journal of the Movement Disorder Society.

[16]  C. Sudlow,et al.  Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank Participants With Those of the General Population , 2017, American journal of epidemiology.

[17]  S. Seal,et al.  Mutations in Epigenetic Regulation Genes Are a Major Cause of Overgrowth with Intellectual Disability , 2017, American journal of human genetics.

[18]  Eleazar Eskin,et al.  Widespread allelic heterogeneity in complex traits , 2016, bioRxiv.

[19]  A. Hattersley,et al.  Precision diabetes: learning from monogenic diabetes , 2017, Diabetologia.

[20]  Radek Szklarczyk,et al.  Rapid Resolution of Blended or Composite Multigenic Disease in Infants by Whole‐Exome Sequencing , 2017, The Journal of pediatrics.

[21]  Joan,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[22]  Deciphering Developmental Disorders Study,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[23]  K. Boycott,et al.  When One Diagnosis Is Not Enough. , 2017, The New England journal of medicine.

[24]  N. Katsanis The continuum of causality in human genetic disorders , 2016, Genome Biology.

[25]  M. McCarthy,et al.  The Common p.R114W HNF4A Mutation Causes a Distinct Clinical Subtype of Monogenic Diabetes , 2016, Diabetes.

[26]  P. Visscher,et al.  Genetic pleiotropy in complex traits and diseases: implications for genomic medicine , 2016, Genome Medicine.

[27]  P. Visscher,et al.  A plethora of pleiotropy across complex traits , 2016, Nature Genetics.

[28]  Annie Niehaus,et al.  Using ClinVar as a Resource to Support Variant Interpretation , 2016, Current protocols in human genetics.

[29]  Christopher R. Jones,et al.  A PERIOD3 variant causes a circadian phenotype and is associated with a seasonal mood trait , 2016, Proceedings of the National Academy of Sciences.

[30]  Patrick F. Sullivan,et al.  Quantifying prion disease penetrance using large population control cohorts , 2016, Science Translational Medicine.

[31]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[32]  Adam Kiezun,et al.  Exome Aggregation Consortium , 2016 .

[33]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[34]  C. Herold,et al.  Adjusting heterogeneous ascertainment bias for genetic association analysis with extended families , 2015, BMC Medical Genetics.

[35]  Blair H. Smith,et al.  Generation Scotland , 2015 .

[36]  B. Shields,et al.  Recognition and Management of Individuals With Hyperglycemia Because of a Heterozygous Glucokinase Mutation , 2015, Diabetes Care.

[37]  M. Bastepe,et al.  RARE BONE DISEASE ( CB LANGMAN AND E SHORE , SECTION EDITORS ) GNAS Spectrum of Disorders , 2015 .

[38]  Alejandro Sifrim,et al.  Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data , 2015, The Lancet.

[39]  P. Elliott,et al.  UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age , 2015, PLoS medicine.

[40]  G. Lettre,et al.  Rare variant association studies: considerations, challenges and opportunities , 2015, Genome Medicine.

[41]  François Schiettecatte,et al.  OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders , 2014, Nucleic Acids Res..

[42]  E. Minikel,et al.  Ascertainment bias causes false signal of anticipation in genetic prion disease. , 2014, American journal of human genetics.

[43]  Nazneen Rahman,et al.  Breast-cancer risk in families with mutations in PALB2. , 2014, The New England journal of medicine.

[44]  Caroline F. Wright,et al.  DECIPHER: database for the interpretation of phenotype-linked plausibly pathogenic sequence and copy-number variation , 2013, Nucleic Acids Res..

[45]  H. Grönberg,et al.  A population-based assessment of germline HOXB13 G84E mutation and prostate cancer risk. , 2014, European urology.

[46]  E. Birney,et al.  Policy challenges of clinical genome sequencing , 2013, BMJ.

[47]  W. Horner-Johnson,et al.  Assessing Understanding and Obtaining Consent from Adults with Intellectual Disabilities for a Health Promotion Study. , 2013, Journal of policy and practice in intellectual disabilities.

[48]  C. Tyler-Smith,et al.  Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease , 2013, Human Genetics.

[49]  M. Weedon,et al.  Improved genetic testing for monogenic diabetes using targeted next-generation sequencing , 2013, Diabetologia.

[50]  A. Utani,et al.  Malfunction of nuclease ERCC1-XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia. , 2013, American journal of human genetics.

[51]  Lun Yang,et al.  Quantitative assessment of the effect of LRRK2 exonic variants on the risk of Parkinson's disease: a meta-analysis. , 2012, Parkinsonism & related disorders.

[52]  J. Carpten,et al.  Germline mutations in HOXB13 and prostate-cancer risk. , 2012, The New England journal of medicine.

[53]  C. Magnani,et al.  Kin‐cohort analysis of LRRK2‐G2019S penetrance in Parkinson's disease , 2011, Movement disorders : official journal of the Movement Disorder Society.

[54]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[55]  Raffaella Origa,et al.  BETA THALASSEMIA , 2018, The Professional Medical Journal.

[56]  M. King,et al.  Genetic Heterogeneity in Human Disease , 2010, Cell.

[57]  S. Ellard,et al.  Update on mutations in glucokinase (GCK), which cause maturity‐onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia , 2009, Human mutation.

[58]  Peter Kraft,et al.  Replication in genome-wide association studies. , 2009, Statistical science : a review journal of the Institute of Mathematical Statistics.

[59]  Frank Reimann,et al.  TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction , 2009, Nature Genetics.

[60]  M. McCarthy,et al.  Genome-wide association studies for complex traits: consensus, uncertainty and challenges , 2008, Nature Reviews Genetics.

[61]  B. Lorenz,et al.  Mutation analysis in a family with oculocutaneous albinism manifesting in the same generation of three branches. , 2007, Molecular vision.

[62]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[63]  N. Rahman,et al.  Mutations in RNF135, a gene within the NF1 microdeletion region, cause phenotypic abnormalities including overgrowth , 2007, Nature Genetics.

[64]  Katri Pylkäs,et al.  A recurrent mutation in PALB2 in Finnish cancer families , 2007, Nature.

[65]  Colin N A Palmer,et al.  Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis , 2006, Nature Genetics.

[66]  S. Bale,et al.  Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris , 2006, Nature Genetics.

[67]  Carlos D Bustamante,et al.  Ascertainment bias in studies of human genome-wide polymorphism. , 2005, Genome research.

[68]  C. Summers,et al.  MC1R mutations modify the classic phenotype of oculocutaneous albinism type 2 (OCA2). , 2003, American journal of human genetics.

[69]  M. Owen,et al.  The W546X mutation of the thyrotropin receptor gene: potential major contributor to thyroid dysfunction in a Caucasian population. , 2003, The Journal of clinical endocrinology and metabolism.

[70]  G. Mollet,et al.  Structure of the human type IV collagen gene COL4A3 and mutations in autosomal Alport syndrome. , 2001, Journal of the American Society of Nephrology : JASN.

[71]  H. Dodge,et al.  Random versus volunteer selection for a community-based study. , 1998, The journals of gerontology. Series A, Biological sciences and medical sciences.

[72]  H. Smeets,et al.  Autosomal dominant Alport syndrome linked to the type IV collage alpha 3 and alpha 4 genes (COL4A3 and COL4A4). , 1997, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[73]  I. Hughes,et al.  Functional analysis of six androgen receptor mutations identified in patients with partial androgen insensitivity syndrome. , 1996, Human molecular genetics.