News - Good or Bad - and its Impact on Volatility Predictions over Multiple Horizons

We introduce a new class of parametric models applicable to a mixture of high and low frequency returns and revisit the concept of news impact curves introduced by Engle and Ng (1993). Overall, we find that moderately good (intra-daily) news reduces volatility (the next day), while both very good news (unusual high intra-daily positive returns) and bad news (negative returns) increase volatility, with the latter having a more severe impact. The asymmetries disappear over longer horizons. Models featuring asymmetries dominate in terms of out-of-sample forecasting performance, especially during the 2007--2008 financial crisis. The Author 2010. Published by Oxford University Press on behalf of The Society for Financial Studies. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org., Oxford University Press.

[1]  Kyung-Chun Mun The joint response of stock and foreign exchange markets to macroeconomic surprises: Using US and Japanese data , 2012 .

[2]  Neil Shephard,et al.  Measuring Downside Risk - Realised Semivariance , 2008 .

[3]  R. Engle,et al.  A Multiple Indicators Model for Volatility Using Intra-Daily Data , 2003 .

[4]  Peter F. Christoffersen,et al.  Option-Implied Measures of Equity Risk , 2009 .

[5]  K. West,et al.  Asymptotic Inference about Predictive Ability , 1996 .

[6]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[7]  T. Sargent,et al.  Recursive Models of Dynamic Linear Economies , 2013 .

[8]  F. Diebold,et al.  Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility , 2005, The Review of Economics and Statistics.

[9]  Eric Ghysels,et al.  Multi-Period Forecasts of Volatility: Direct, Iterated, and Mixed-Data Approaches , 2009 .

[10]  Larry Wasserman,et al.  All of Nonparametric Statistics (Springer Texts in Statistics) , 2006 .

[11]  George Tauchen,et al.  Identifying Realized Jumps on Financial Markets , 2005 .

[12]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[13]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[14]  Jeffrey R. Russell,et al.  Separating Microstructure Noise from Volatility , 2004 .

[15]  Guojun Wu,et al.  Asymmetric Volatility and Risk in Equity Markets , 1997 .

[16]  W. Schwert Stock market volatility and the crash of 87 , 1990 .

[17]  R. Gencay,et al.  An Introduc-tion to High-Frequency Finance , 2001 .

[18]  Eric Ghysels,et al.  Regression Models with Mixed Sampling Frequencies , 2010 .

[19]  J. Ord,et al.  An Investigation of Transactions Data for NYSE Stocks , 1985 .

[20]  Eric Ghysels,et al.  Série Scientifique Scientific Series the Midas Touch: Mixed Data Sampling Regression Models the Midas Touch: Mixed Data Sampling Regression Models* , 2022 .

[21]  Philip Hans Franses,et al.  The Econometric Analysis of Seasonal Time Series , 2005 .

[22]  E. Mammen,et al.  Additive Models: Extensions and Related Models. , 2012 .

[23]  N. Shephard,et al.  Variation, Jumps, Market Frictions and High Frequency Data in Financial Econometrics , 2005 .

[24]  Eric Ghysels,et al.  Periodic Autoregressive Conditional Heteroskedasticity , 1996 .

[25]  Eric Ghysels,et al.  State Space Models and MIDAS Regressions , 2013 .

[26]  L. Wasserman All of Nonparametric Statistics , 2005 .

[27]  Federico M. Bandi,et al.  Microstructure Noise, Realized Variance, and Optimal Sampling , 2008 .

[28]  John Y. Campbell,et al.  No News is Good News: An Asymmetric Model of Changing Volatility in Stock Returns , 1991 .

[29]  J. Jacod,et al.  La Variation Quadratique du Brownien en Pre'sence d''Erreurs d''Arrondi , 1996 .

[30]  Neil Shephard,et al.  Regular and Modified Kernel-Based Estimators of Integrated Variance: The Case with Independent Noise , 2004 .

[31]  Robert F. Engle,et al.  Stock Volatility and the Crash of '87: Discussion , 1990 .

[32]  Lars Peter Hansen,et al.  Advances in Economics and Econometrics , 2003 .

[33]  Jean Jacod,et al.  Volatility estimators for discretely sampled Lévy processes , 2007 .

[34]  P. Protter,et al.  Asymptotic error distributions for the Euler method for stochastic differential equations , 1998 .

[35]  Fulvio Corsi,et al.  A Simple Approximate Long-Memory Model of Realized Volatility , 2008 .

[36]  Enno Mammen,et al.  Estimating Semiparametric Arch (∞) Models by Kernel Smoothing Methods , 2003 .

[37]  E. Ghysels,et al.  Why Do Absolute Returns Predict Volatility So Well , 2006 .

[38]  B. Bollen,et al.  Estimating Daily Volatility in Financial Markets Utilizing Intraday Data , 2002 .

[39]  R. C. Merton,et al.  On Estimating the Expected Return on the Market: An Exploratory Investigation , 1980 .

[40]  T. Bollerslev,et al.  Deutsche Mark–Dollar Volatility: Intraday Activity Patterns, Macroeconomic Announcements, and Longer Run Dependencies , 1998 .

[41]  K. French,et al.  Expected stock returns and volatility , 1987 .

[42]  E. Mammen,et al.  Nonparametric Transformation to White Noise , 2006 .

[43]  A. Christie,et al.  The stochastic behavior of common stock variances: value , 1982 .

[44]  George Tauchen,et al.  Cross-Stock Comparisons of the Relative Contribution of Jumps to Total Price Variance , 2012 .

[45]  N. Shephard,et al.  Estimating quadratic variation using realized variance , 2002 .

[46]  E. Ghysels,et al.  MIDAS Regressions: Further Results and New Directions , 2006 .

[47]  Stephen L Taylor,et al.  A Comparison of Seasonal Adjustment Methods When Forecasting Intraday Volatility , 2002 .

[48]  N. Shephard,et al.  LIMIT THEOREMS FOR BIPOWER VARIATION IN FINANCIAL ECONOMETRICS , 2005, Econometric Theory.

[49]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[50]  Halbert White,et al.  Tests of Conditional Predictive Ability , 2003 .

[51]  H. Hurd,et al.  Periodically Correlated Random Sequences , 2007 .

[52]  Eric Ghysels,et al.  Mixed Data Sampling , 2010 .

[53]  Jens Perch Nielsen,et al.  A simple bias reduction method for density estimation , 1995 .

[54]  N. Shephard,et al.  Power and bipower variation with stochastic volatility and jumps , 2003 .

[55]  Andrew J. Patton Volatility Forecast Comparison Using Imperfect Volatility Proxies , 2006 .

[56]  E. Ghysels,et al.  Série Scientifique Scientific Series Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies , 2022 .

[57]  Robert F. Dittmar,et al.  Ex Ante Skewness and Expected Stock Returns , 2009 .

[58]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[59]  P. Hansen,et al.  Realized Variance and Market Microstructure Noise , 2005 .

[60]  G. C. Tiao,et al.  Hidden Periodic Autoregressive-Moving Average Models in Time Series Data, , 1980 .

[61]  Yacine Ait-Sahalia,et al.  How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise , 2003 .

[62]  C. Emre Alper,et al.  MIDAS volatility forecast performance under market stress: Evidence from emerging stock markets , 2012 .

[63]  P. Mykland,et al.  How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise , 2003 .

[64]  Walter E. Hoadley The Business and Economic Statistics Section , 1951 .

[65]  Gonzalo Rubio Irigoyen,et al.  The Relationship between Risk and Expected Return in Europe , 2005 .

[66]  T. Bollerslev,et al.  Intraday periodicity and volatility persistence in financial markets , 1997 .

[67]  Julien Chevallier,et al.  On the volatility-volume relationship in energy futures markets using intraday data , 2012 .

[68]  Ralf Becker,et al.  Does implied volatility provide any information beyond that captured in model-based volatility forecasts? , 2007 .

[69]  Yuhang Xing,et al.  What Does Individual Option Volatility Smirk Tell Us About Future Equity Returns? , 2008 .

[70]  Mark J. Jensen,et al.  FEDERAL RESERVE BANK of ATLANTA WORKING PAPER SERIES Estimating a Semiparametric Asymmetric Stochastic Volatility Model with a Dirichlet Process Mixture , 2011 .

[71]  Denise R. Osborn,et al.  The Econometric Analysis of Seasonal Time Series , 2001 .

[72]  John Odenckantz,et al.  Nonparametric Statistics for Stochastic Processes: Estimation and Prediction , 2000, Technometrics.

[73]  Yacine Aït-Sahalia,et al.  Disentangling diffusion from jumps , 2004 .

[74]  Fulvio Corsi,et al.  A Simple Long Memory Model of Realized Volatility , 2004 .

[75]  Yacine Ait-Sahalia,et al.  Out of Sample Forecasts of Quadratic Variation , 2008 .

[76]  J. Florens,et al.  Linear Inverse Problems in Structural Econometrics Estimation Based on Spectral Decomposition and Regularization , 2003 .