Generic subadditive functions

We prove a generalization of the `Subadditive Limit Theorem' and of the corresponding Berz Theorem in a class of functions that includes both the measurable functions and the `Baire functions'. The generic subadditive functions are defined by a combinatorial property previously introduced by the authors for the study of the foundations of regular variation. By specialization we provide the previously unknown Baire variants of the fundamental theorems of subadditive functions, answering an old question posed by Bingham, Goldie, and Teugels in 1987.

[1]  M. Kuczma,et al.  On the boundedness and continuity of convex functions and additive functions , 1969 .

[2]  E. Berz Sublinear functions onR , 1975 .

[3]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[4]  On subadditive functions , 1993 .

[5]  G. Doetsch,et al.  Zur Theorie der konvexen Funktionen , 1915 .

[6]  A. Kechris Classical descriptive set theory , 1987 .

[7]  E. Hille Functional Analysis And Semi-Groups , 1948 .

[8]  N. Bingham,et al.  Foundations of regular variation , 2006 .

[9]  Attila Gilányi,et al.  An Introduction to the Theory of Functional Equations and Inequalities , 2008 .

[10]  T. Liggett Interacting Particle Systems , 1985 .

[11]  N. Bingham,et al.  Beyond the theorems of Steinhaus and Ostrowski: combinatorial versions , 2007 .

[12]  N. Bingham,et al.  Extensions of Regular Variation, I: Uniformity and Quatifiers , 1982 .

[13]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[14]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications, Vol. II , 1972, The Mathematical Gazette.

[15]  N. Bingham,et al.  Beyond Lebesgue and Baire: generic regular variation , 2009 .

[16]  Duality and the Kestelman-Borwein-Ditor Theorem , 2007 .

[17]  R. A. Rosenbaum,et al.  Sub-additive functions , 1950 .

[18]  M. Kuczma,et al.  On the boundedness and continuity of convex functions and additive functions , 1969 .

[19]  M. Meerschaert Regular Variation in R k , 1988 .

[20]  R. Jackson Inequalities , 2007, Algebra for Parents.

[21]  Frank E. Grubbs,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[22]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .