A rotating disc voltammetry study of the 1,8-dihydroxyanthraquinone mediated reduction of colloidal indigo

Colloidal indigo is reduced to an aqueous solution of leuco-indigo in a mediated two-electron process converting the water-insoluble dye into the water-soluble leuco form. The colloidal dye does not interact directly with the electrode surface, and to employ an electrochemical process for this reduction, the redox mediator 1,8-dihydroxyanthraquinone (1,8-DHAQ) is used to transfer electrons from the electrode to the dye. The mediated reduction process is investigated at a (500-kHz ultrasound-assisted) rotating disc electrode, and the quantitative analysis of voltammetric data is attempted employing the Digisim numerical simulation software package. At the most effective temperature, 353 K, the diffusion coefficient for 1,8-DHAQ is (0.84±0.08)×10−9 m2 s−1, and it is shown that an apparently kinetically controlled reaction between the reduced form of the mediator and the colloidal indigo occurs within the diffusion layer at the electrode surface. The apparent bimolecular rate constant kapp=3 mol m−3 s−1 for the rate law % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX % garmWu51MyVXgatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz % aebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY-Hhbbf9v8qqaq % Fr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qq % Q8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeWaeaaakeaada % WcaaqaaiaadsgadaWadaqaaiaabYgacaqGLbGaaeyDaiaabogacaqG % VbGaeyOeI0IaaeyAaiaab6gacaqGKbGaaeyAaiaabEgacaqGVbaaca % GLBbGaayzxaaaabaGaamizaiaadshaaaGaeyypa0Jaam4AamaaBaaa % leaacaqGHbGaaeiCaiaabchaaeqaaOGaey41aq7aamWaaeaacaqGTb % GaaeyzaiaabsgacaqGPbGaaeyyaiaabshacaqGVbGaaeOCaaGaay5w % aiaaw2faaiabgEna0oaadmaabaGaaeyAaiaab6gacaqGKbGaaeyAai % aabEgacaqGVbaacaGLBbGaayzxaaaaaa!617E!$$\frac{{d{\left[ {{\text{leuco}} - {\text{indigo}}} \right]}}} {{dt}} = k_{{{\text{app}}}} \times {\left[ {{\text{mediator}}} \right]} \times {\left[ {{\text{indigo}}} \right]}$$ is determined and attributed to a mediator diffusion controlled dissolution of the colloid particles. The average particle size and the number of molecules per particles are estimated from the apparent bimolecular rate constant and confirmed by scanning electron microscopy.

[1]  T. Bechtold,et al.  Anthraquinones as mediators for the indirect cathodic reduction of dispersed organic dyestuffs , 1999 .

[2]  K. B. Oldham,et al.  Fundamentals of electrochemical science , 1993 .

[3]  A. Roessler,et al.  State of the art technologies and new electrochemical methods for the reduction of vat dyes , 2003 .

[4]  P. Rys,et al.  Direct electrochemical reduction of indigo: process optimization and scale-up in a flow cell , 2002 .

[5]  R. Compton,et al.  Monitoring Particle Sizes with Rotating Disc Electrodes: Measurement of the Dissolution Kinetics of Calcite , 1993 .

[6]  T. Bechtold,et al.  Fe3+--gluconate and Ca2+-Fe3+--gluconate complexes as mediators for indirect cathodic reduction of vat dyes – Cyclic voltammetry and batch electrolysis experiments , 2004 .

[7]  P. John,et al.  The mechanism of bacterial indigo reduction , 2005, Applied Microbiology and Biotechnology.

[8]  F. Marken,et al.  Clostridium isatidis colonised carbon electrodes: voltammetric evidence for direct solid state redox processes , 2000 .

[9]  Stephen W. Feldberg,et al.  A Simulator for Cyclic Voltammetric Responses , 1994 .

[10]  Frank C. Walsh,et al.  A first course in electrochemical engineering , 1993 .

[11]  Š. Komorsky-Lovrič Square-wave voltammetry of an aqueous solution of indigo , 2000 .

[12]  A. Roessler,et al.  Direct electrochemical reduction of vat dyes in a fixed bed of graphite granules , 2004 .

[13]  A. Roessler New electrochemical methods for the reduction of vat dyes , 2003 .

[14]  F. Scholz,et al.  Voltammetry of Organic Microparticles , 1999 .

[15]  F. Marken,et al.  Direct electrochemistry of nanoparticulate Fe2O3 in aqueous solution and adsorbed onto tin-doped indium oxide , 2001 .

[16]  U. Schröder,et al.  Electrochemistry of Immobilized Particles and Droplets , 2005 .

[17]  P. Rys,et al.  Electrochemical reduction of indigo in fixed and fluidized beds of graphite granules , 2003 .

[18]  A. Bond,et al.  The electrochemical reduction of indigo dissolved in organic solvents and as a solid mechanically attached to a basal plane pyrolytic graphite electrode immersed in aqueous electrolyte solution , 1997 .

[19]  T. Bechtold,et al.  Electrochemical Vat Dyeing Combination of an Electrolyzer with a Dyeing Apparatus , 2002 .