Adaptive hierarchical classification networks

Hierarchical decomposition enables increased number of classes in a classification problem. Class similarities guide the creation of a family of course to fine classifiers which solve categorical problems more effectively than a single flat classifier. High accuracies require precise configurations for each of the family of classifiers. This paper proposes a method to adaptively select the configuration of the hierarchical family of classifiers. Linkage statistics from overall and sub-classification confusion matrices define categorical groupings for an efficient and accurate classification framework. Depending on the number of classes and the complexity of the problem, an adaptive configuration manager chooses between a multi-layer perceptron or a deep convolutional neural network, then selects the complexity of each. Experiments on CalTech101, CalTech256, CIFAR100 and the ImageNet datasets demonstrate performance of adaptive hierarchical models on an image classification task.

[1]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[2]  Sinan Kalkan,et al.  Deep Hierarchies in the Primate Visual Cortex: What Can We Learn for Computer Vision? , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[4]  Jonathon Shlens,et al.  Fast, Accurate Detection of 100,000 Object Classes on a Single Machine , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Yunbo Xiong Building text hierarchical structure by using confusion matrix , 2012, 2012 5th International Conference on BioMedical Engineering and Informatics.

[6]  Qiang Chen,et al.  Network In Network , 2013, ICLR.

[7]  Shantanu Godbole Exploiting confusion matrices for automatic generation of topic hierarchies and scaling up multi-way classifiers , 2002 .

[8]  Jian Sun,et al.  Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition , 2015, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Yoshua Bengio,et al.  Maxout Networks , 2013, ICML.

[10]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[11]  Nitish Srivastava,et al.  Improving neural networks by preventing co-adaptation of feature detectors , 2012, ArXiv.

[12]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[13]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[15]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[16]  Joshua B. Tenenbaum,et al.  Learning with Hierarchical-Deep Models , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Andrew L. Maas Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .

[18]  Jürgen Schmidhuber,et al.  Compete to Compute , 2013, NIPS.

[19]  Geoffrey E. Hinton,et al.  Acoustic Modeling Using Deep Belief Networks , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[20]  Igor T. Podolak Hierarchical classifier with overlapping class groups , 2008, Expert Syst. Appl..

[21]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[22]  Yuxin Peng,et al.  Error-Driven Incremental Learning in Deep Convolutional Neural Network for Large-Scale Image Classification , 2014, ACM Multimedia.

[23]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[24]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[25]  Nitish Srivastava,et al.  Discriminative Transfer Learning with Tree-based Priors , 2013, NIPS.

[26]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[27]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[28]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[29]  Trevor Darrell,et al.  LSDA: Large Scale Detection through Adaptation , 2014, NIPS.

[30]  Stéphane Herbin,et al.  Semantic hierarchies for image annotation: A survey , 2012, Pattern Recognit..

[31]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[32]  Yann LeCun,et al.  Regularization of Neural Networks using DropConnect , 2013, ICML.

[33]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[34]  Sergey Ioffe,et al.  Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , 2016, AAAI.

[35]  Andrew G. Howard,et al.  Some Improvements on Deep Convolutional Neural Network Based Image Classification , 2013, ICLR.

[36]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[37]  Shagan Sah,et al.  Hierarchical Decomposition of Large Deep Networks , 2016, Computational Imaging.