SOLVING THE TRUST-REGION SUBPROBLEM USING THE
暂无分享,去创建一个
[1] Richard H. Byrd,et al. A Family of Trust Region Based Algorithms for Unconstrained Minimization with Strong Global Convergence Properties. , 1985 .
[2] Nicholas I. M. Gould,et al. CUTE: constrained and unconstrained testing environment , 1995, TOMS.
[3] Stefano Lucidi,et al. Numerical Experiences with New Truncated Newton Methods in Large Scale Unconstrained Optimization , 1997, Comput. Optim. Appl..
[4] S. Nash. Newton-Type Minimization via the Lanczos Method , 1984 .
[5] Elizabeth Eskow,et al. A New Modified Cholesky Factorization , 1990, SIAM J. Sci. Comput..
[6] J. Reid,et al. Tracking the Progress of the Lanczos Algorithm for Large Symmetric Eigenproblems , 1981 .
[7] M. Powell. A New Algorithm for Unconstrained Optimization , 1970 .
[8] Franz Rendl,et al. A semidefinite framework for trust region subproblems with applications to large scale minimization , 1997, Math. Program..
[9] Danny C. Sorensen,et al. Minimization of a Large-Scale Quadratic FunctionSubject to a Spherical Constraint , 1997, SIAM J. Optim..
[10] T. Steihaug. The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .
[11] M. Powell. CONVERGENCE PROPERTIES OF A CLASS OF MINIMIZATION ALGORITHMS , 1975 .
[12] J. Dennis,et al. Two new unconstrained optimization algorithms which use function and gradient values , 1979 .
[13] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[14] David M. author-Gay. Computing Optimal Locally Constrained Steps , 1981 .
[15] R. Vanderbei,et al. Max-min eigenvalue problems, primal-dual Interior point algorithms, and Trust region subproblemst , 1995 .