State-of-the-Art of CO2 Capture with Ionic Liquids

Economical and environmental aspects are the main motivation for research on energy efficient processes and the search for environment friendly materials for CO2 capture. Currently, CO2 capture is dominated by amine-based (e.g., monoethanolamine) technologies, which are very energy intensive and less attractive from an environmental point of view due to emissions of the used volatile solvent components. Ionic liquids have been proposed as a promising alternative to the conventional volatile solvents, because of their low volatility and other interesting properties. This remarkable interest has led to a rapid growth of literature on this specific subject. The aim of the present review paper is to provide a detailed overview of the achievements and difficulties that has been encountered in finding a suitable ionic liquid for CO2 capture from flue-gas streams. A major part of this review includes an overview of the experimental data of CO2 solubility, selectivity, and diffusivity in different ionic liquids. ...

[1]  E. Maginn,et al.  Amine-functionalized task-specific ionic liquids: a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation. , 2008, Journal of the American Chemical Society.

[2]  R. G. Evans,et al.  Non-haloaluminate room-temperature ionic liquids in electrochemistry--a review. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[3]  A. Trejo,et al.  Solubilities of carbon dioxide and hydrogen sulfide in propylene carbonate, N-methylpyrrolidone and sulfolane , 1988 .

[4]  T. Vlugt,et al.  Maxwell-Stefan diffusivities in binary mixtures of ionic liquids with dimethyl sulfoxide (DMSO) and H2O. , 2011, The journal of physical chemistry. B.

[5]  G. Maurer,et al.  Solubility of oxygen in the ionic liquid [bmim][PF6]: Experimental and molecular simulation results , 2005 .

[6]  Paul T Anastas,et al.  Origins, current status, and future challenges of green chemistry. , 2002, Accounts of chemical research.

[7]  E. Min,et al.  Ionic liquids: applications in catalysis , 2002 .

[8]  Ziniu Yu,et al.  Dissolution of cellulose with ionic liquids and its application : a mini-review , 2006 .

[9]  F. Karadaş,et al.  Review on the Use of Ionic Liquids (ILs) as Alternative Fluids for CO2 Capture and Natural Gas Sweetening , 2010 .

[10]  G. Maurer,et al.  Solubility of H2 in the ionic liquid [hmim][Tf2N] , 2006 .

[11]  B Jastorff,et al.  Design of sustainable chemical products--the example of ionic liquids. , 2007, Chemical reviews.

[12]  Gary T. Rochelle,et al.  Amine Scrubbing for CO2 Capture , 2009, Science.

[13]  J. Brennecke,et al.  Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids , 2005 .

[14]  G. W. Meindersma,et al.  Solvent properties of functionalized ionic liquids for CO2 absorption , 2007 .

[15]  R. Noble,et al.  Ideal gas solubilities and solubility selectivities in a binary mixture of room-temperature ionic liquids. , 2008, The journal of physical chemistry. B.

[16]  João A. P. Coutinho,et al.  Group Contribution Methods for the Prediction of Thermophysical and Transport Properties of Ionic Liquids , 2009 .

[17]  W. Shi,et al.  Molecular simulations and experimental studies of solubility and diffusivity for pure and mixed gases of H2, CO2, and Ar absorbed in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N]). , 2010, The journal of physical chemistry. B.

[18]  R. Robinson,et al.  Vapor-liquid phase equilibrium for carbon dioxide-n-hexane at 40, 80, and 120 .degree.C , 1981 .

[19]  Edward J. Maginn,et al.  What to Do with CO2 , 2010 .

[20]  João A. P. Coutinho,et al.  High pressure phase behavior of carbon dioxide in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids , 2009 .

[21]  Maria Forsyth,et al.  Ionic liquids in electrochemical devices and processes: managing interfacial electrochemistry. , 2007, Accounts of chemical research.

[22]  K. R. Seddon,et al.  Ionic liquids: a taste of the future. , 2003, Nature materials.

[23]  J. Brennecke,et al.  Anion effects on gas solubility in ionic liquids. , 2005, The journal of physical chemistry. B.

[24]  David Rooney,et al.  Thermophysical Properties of Amino Acid-Based Ionic Liquids , 2010 .

[25]  Joan F. Brennecke,et al.  Solubilities and Thermodynamic Properties of Gases in the Ionic Liquid 1-n-Butyl-3-methylimidazolium Hexafluorophosphate , 2002 .

[26]  Johan Jacquemin,et al.  Density and viscosity of several pure and water-saturated ionic liquids , 2006 .

[27]  R. Weiss,et al.  Development of Supported Ethanolamines and Modified Ethanolamines for CO2 Capture , 2005 .

[28]  C. Pretti,et al.  Acute toxicity of ionic liquids for three freshwater organisms: Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. , 2009, Ecotoxicology and environmental safety.

[29]  James H. Davis Task-Specific Ionic Liquids , 2004 .

[30]  J. Brennecke,et al.  Recovery of Organic Products from Ionic Liquids Using Supercritical Carbon Dioxide , 2001 .

[31]  M. Gomes,et al.  Densities and refractive indices of imidazolium- and phosphonium-based ionic liquids: Effect of temperature, alkyl chain length, and anion , 2009 .

[32]  N. Gathergood,et al.  Biodegradation studies of ionic liquids. , 2010, Chemical Society reviews.

[33]  Hua Zhao,et al.  INNOVATIVE APPLICATIONS OF IONIC LIQUIDS AS “GREEN” ENGINEERING LIQUIDS , 2006 .

[34]  L. Rebelo,et al.  Ionic liquids: a pathway to environmental acceptability. , 2011, Chemical Society reviews.

[35]  K. R. Seddon,et al.  Applications of ionic liquids in the chemical industry. , 2008, Chemical Society reviews.

[36]  K. R. Seddon,et al.  The nature of ionic liquids in the gas phase. , 2007, The journal of physical chemistry. A.

[37]  Paul Scovazzo,et al.  Correlations of Low-Pressure Carbon Dioxide and Hydrocarbon Solubilities in Imidazolium-, Phosphonium-, and Ammonium-Based Room-Temperature Ionic Liquids. Part 1. Using Surface Tension , 2008 .

[38]  Christoph Werner,et al.  Corrosion behaviour of ionic liquids , 2005 .

[39]  C. Pretti,et al.  Acute toxicity of ionic liquids to the zebrafish (Danio rerio) , 2006 .

[40]  João A. P. Coutinho,et al.  High pressure CO2 solubility in N-methyl-2-hydroxyethylammonium protic ionic liquids , 2011 .

[41]  S. Solomon,et al.  Irreversible climate change due to carbon dioxide emissions , 2009, Proceedings of the National Academy of Sciences.

[42]  J. Andreu,et al.  Modeling ionic liquids and the solubility of gases in them: Recent advances and perspectives , 2010 .

[43]  Paul Scovazzo,et al.  Correlations of Low-Pressure Carbon Dioxide and Hydrocarbon Solubilities in Imidazolium-, Phosphonium-, and Ammonium-Based Room-Temperature Ionic Liquids. Part 2. Using Activation Energy of Viscosity , 2008 .

[44]  Mohd Tariq,et al.  Volatility of Aprotic Ionic Liquids — A Review , 2010 .

[45]  N. Gathergood,et al.  Biodegradable, non-bactericidal oxygen-functionalised imidazolium esters: A step towards ‘greener’ ionic liquids , 2009 .

[46]  Nilay Shah,et al.  An overview of CO2 capture technologies , 2010 .

[47]  Chul-Woong Cho,et al.  Environmental fate and toxicity of ionic liquids: a review. , 2010, Water research.

[48]  Luís M. N. B. F. Santos,et al.  Specific solvation interactions of CO2 on acetate and trifluoroacetate imidazolium based ionic liquids at high pressures. , 2009, The journal of physical chemistry. B.

[49]  J. Dixon,et al.  Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial community , 2007, Biodegradation.

[50]  M. Shiflett,et al.  Separation of CO2 and H2S using room-temperature ionic liquid [bmim][PF6] , 2010 .

[51]  I. Fonseca,et al.  Pressure-volume-temperature measurements of phosphonium-based ionic liquids and analysis with simple equations of state , 2011 .

[52]  G. Maurer,et al.  Simultaneous solubility of carbon dioxide and hydrogen in the ionic liquid [hmim][Tf2N]: Experimental results and correlation , 2011 .

[53]  G. Maurer,et al.  Solubility of the Single Gases Carbon Dioxide and Hydrogen in the Ionic Liquid (bmpy)(Tf2N) , 2010 .

[54]  U. Kragl,et al.  Do we understand the volatility of ionic liquids? , 2007, Angewandte Chemie.

[55]  Cor J. Peters,et al.  High-pressure phase behavior of systems with ionic liquids: II. The binary system carbon dioxide+1-ethyl-3-methylimidazolium hexafluorophosphate , 2004 .

[56]  K. Tsunashima,et al.  Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes , 2007 .

[57]  Edward J Maginn,et al.  Atomistic simulation of the thermodynamic and transport properties of ionic liquids. , 2007, Accounts of chemical research.

[58]  M. Gomes,et al.  Low-pressure solubilities and thermodynamics of solvation of eight gases in 1-butyl-3-methylimidazolium hexafluorophosphate , 2006 .

[59]  R. Singer,et al.  Biodegradable pyridinium ionic liquids: design, synthesis and evaluation , 2009 .

[60]  A. Mehdizadeh,et al.  Solubility of CO2 in 1-(2-hydroxyethyl)-3-methylimidazolium ionic liquids with different anions , 2010 .

[61]  S. Nagase,et al.  CO2 separation membranes using ionic liquids in a Nafion matrix , 2010 .

[62]  G. Gokel,et al.  The vaporization enthalpies of some crown and polyethers by correlation gas chromatography , 2000 .

[63]  Peter Licence,et al.  Measuring and predicting Delta(vap)H298 values of ionic liquids. , 2009, Physical chemistry chemical physics : PCCP.

[64]  N. Meinshausen,et al.  Greenhouse-gas emission targets for limiting global warming to 2 °C , 2009, Nature.

[65]  G. Wytze Meindersma,et al.  Density, viscosity, and surface tension of synthesis grade imidazolium,pyridinium, and pyrrolidinium based room temperature ionic liquids , 2009 .

[66]  A. Bondi van der Waals Volumes and Radii , 1964 .

[67]  K. Yoo,et al.  Measurement of CO2 Solubility in Ionic Liquids: [BMP][Tf2N] and [BMP][MeSO4] by Measuring Bubble-Point Pressure , 2011 .

[68]  Joan F. Brennecke,et al.  High-Pressure Phase Behavior of Ionic Liquid/CO2 Systems , 2001 .

[69]  Jason E. Bara,et al.  Enhanced CO2 separation selectivity in oligo(ethylene glycol) functionalized room-temperature ionic liquids , 2007 .

[70]  Jason E. Bara,et al.  Gas separations in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes , 2009 .

[71]  Nicholas Gathergood,et al.  Biodegradable ionic liquids: Part I. Concept, preliminary targets and evaluation , 2004 .

[72]  R. Noble,et al.  Regular Solution Theory and CO2 Gas Solubility in Room-Temperature Ionic Liquids , 2004 .

[73]  Aaron M. Scurto,et al.  Viscosity of Imidazolium-Based Ionic Liquids at Elevated Pressures: Cation and Anion Effects , 2008 .

[74]  A. Tolstoguzov,et al.  Study of the corrosion of metal alloys interacting with an ionic liquid , 2008 .

[75]  M. Kļaviņš,et al.  (2-Hydroxyethyl)ammonium Lactates—Highly Biodegradable and Essentially Non-Toxic Ionic Liquids , 2011 .

[76]  Jason E. Bara,et al.  Guide to CO2 Separations in Imidazolium-Based Room-Temperature Ionic Liquids , 2009 .

[77]  Li-sheng Wang,et al.  Densities and Viscosities of 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate + H2O Binary Mixtures at T = (303.15 to 343.15) K , 2008 .

[78]  Babak Mokhtarani,et al.  Density and viscosity of pyridinium-based ionic liquids and their binary mixtures with water at several temperatures , 2009 .

[79]  J. Coutinho,et al.  The polarity effect upon the methane solubility in ionic liquids: a contribution for the design of ionic liquids for enhanced CO2/CH4 and H2S/CH4 selectivities , 2011 .

[80]  João A. P. Coutinho,et al.  High pressure phase behavior of carbon dioxide in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-butyl-3-methylimidazolium dicyanamide ionic liquids , 2009 .

[81]  R. Stuart Haszeldine,et al.  Carbon Capture and Storage: How Green Can Black Be? , 2009, Science.

[82]  P. H. van Konynenburg,et al.  Critical lines and phase equilibria in binary van der Waals mixtures , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[83]  Luís M. N. B. F. Santos,et al.  High-accuracy vapor pressure data of the extended [C(n)C1im][Ntf2] ionic liquid series: trend changes and structural shifts. , 2011, The journal of physical chemistry. B.

[84]  P. Scovazzo,et al.  Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes , 2009 .

[85]  R. Noble,et al.  Room-temperature ionic liquids and composite materials: platform technologies for CO(2) capture. , 2010, Accounts of chemical research.

[86]  Alan E. Mather,et al.  Solubility of hydrogen sulfide and carbon dioxide in an aqueous diisopropanolamine solution , 1977 .

[87]  Ioanna Ntai,et al.  CO(2) capture by a task-specific ionic liquid. , 2002, Journal of the American Chemical Society.

[88]  A. E. Mather,et al.  Solubility of hydrogen sulfide and carbon dioxide in a Sulfinol solution , 1977 .

[89]  R. Socolow,et al.  Can we bury global warming? , 2005, Scientific American.

[90]  Youssou Traoré,et al.  Synthesis, Physicochemical Properties, and Toxicity Data of New Hydrophobic Ionic Liquids Containing Dimethylpyridinium and Trimethylpyridinium Cations† , 2010 .

[91]  M. Shiflett,et al.  Phase behavior of {carbon dioxide + [bmim][Ac]} mixtures , 2008 .

[92]  Bhaskar D. Kulkarni,et al.  The Path Ahead for Ionic Liquids , 2007 .

[93]  Paul Feron,et al.  CO2 Capture Process Principles and Costs , 2005 .

[94]  Randall J. Bernot,et al.  Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure–property relationship modeling , 2006 .

[95]  Jean-Noël Jaubert,et al.  High carbon dioxide solubilities in imidazolium-based ionic liquids and in poly(ethylene glycol) dimethyl ether. , 2010, The journal of physical chemistry. B.

[96]  R. Noble,et al.  Diffusion and Solubility Measurements in Room Temperature Ionic Liquids , 2006 .

[97]  W. J. McManamey,et al.  The diffusivity of carbon dioxide in some organic liquids at 25° and 50°C , 1973 .

[98]  D. Robinson,et al.  Equilibrium-phase properties of the toluene-carbon dioxide system , 1978 .

[99]  J. Coutinho,et al.  On the spontaneous carboxylation of 1-butyl-3-methylimidazolium acetate by carbon dioxide. , 2012, Chemical communications.

[100]  S. Dai,et al.  Equimolar CO2 capture by imidazolium-based ionic liquids and superbase systems , 2010 .

[101]  J. Bara,et al.  Free Volume as the Basis of Gas Solubility and Selectivity in Imidazolium-Based Ionic Liquids , 2012 .

[102]  A. Berthod,et al.  Ionic liquids in separation techniques. , 2008, Journal of chromatography. A.

[103]  Luísa A. Neves,et al.  Gas permeation studies in supported ionic liquid membranes , 2010 .

[104]  Elizabeth Sommer,et al.  Designing small molecules for biodegradability. , 2007, Chemical reviews.

[105]  Dan Hancu,et al.  Green processing using ionic liquids and CO2 , 1999, Nature.

[106]  Kun Dong,et al.  Biodegradable naphthenic acid ionic liquids: synthesis, characterization, and quantitative structure-biodegradation relationship. , 2008, Chemistry.

[107]  S. Stolte,et al.  The influence of anion species on the toxicity of 1-alkyl-3-methylimidazolium ionic liquids observed in an (eco)toxicological test battery , 2007 .

[108]  P. Scammells,et al.  Biodegradable ionic liquids : Part III. The first readily biodegradable ionic liquids , 2006 .

[109]  Gary T. Rochelle,et al.  Monoethanolamine Degradation: O2 Mass Transfer Effects under CO2 Capture Conditions , 2004 .

[110]  Hideto Matsuyama,et al.  CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane , 2008 .

[111]  M. Shiflett,et al.  Separation of CO2 and H2S Using Room-Temperature Ionic Liquid [bmim] [MeSO4] , 2010 .

[112]  Gary T. Rochelle,et al.  Thermal degradation of monoethanolamine at stripper conditions , 2009 .

[113]  Junhua Huang,et al.  Why are Ionic Liquids Attractive for CO2 Absorption? An Overview , 2009 .

[114]  U. Domańska,et al.  Density and Viscosity of Binary Mixtures of {1-Butyl-3-methylimidazolium Thiocyanate + 1-Heptanol, 1-Octanol, 1-Nonanol, or 1-Decanol} , 2010 .

[115]  J. Coutinho,et al.  On the Nonideality of CO2 Solutions in Ionic Liquids and Other Low Volatile Solvents , 2010 .

[116]  Surya S. Moganty,et al.  Diffusivity of Carbon Dioxide in Room-Temperature Ionic Liquids , 2010 .

[117]  Xuezhong He,et al.  Physical Properties of Ionic Liquids: Database and Evaluation , 2006 .

[118]  K. R. Harris,et al.  Temperature and Pressure Dependence of the Viscosity of the Ionic Liquids 1-Methyl-3-octylimidazolium Hexafluorophosphate and 1-Methyl-3-octylimidazolium Tetrafluoroborate , 2006 .

[119]  E. Gulari,et al.  High-pressure phase equilibria of polyethylene glycol-carbon dioxide systems , 1990 .

[120]  D. Paschek,et al.  Ionic liquids: dissecting the enthalpies of vaporization. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[121]  Jason E. Bara,et al.  Bulk-fluid solubility and membrane feasibility of rmim-based room-temperature ionic liquids , 2006 .

[122]  Eugeny Y. Kenig,et al.  CO2‐Alkanolamine Reaction Kinetics: A Review of Recent Studies , 2007 .

[123]  K. R. Seddon Ionic Liquids for Clean Technology , 1997 .

[124]  Y. Shimoyama,et al.  Predictions of cation and anion effects on solubilities, selectivities and permeabilities for CO2 in ionic liquid using COSMO based activity coefficient model , 2010 .

[125]  P. Wasserscheid Chemistry: Volatile times for ionic liquids , 2006, Nature.

[126]  P. Scammells,et al.  Biodegradable ionic liquids Part II. Effect of the anion and toxicology , 2005 .

[127]  Peter Licence,et al.  Vapourisation of ionic liquids. , 2007, Physical chemistry chemical physics : PCCP.

[128]  Paul Scovazzo,et al.  Gas separations using non-hexafluorophosphate [PF6]− anion supported ionic liquid membranes , 2004 .

[129]  S. Oyama,et al.  Supported Room Temperature Ionic Liquid Membranes for CO2/CH4 Separation , 2011 .

[130]  Mark B. Shiflett,et al.  Hydrogen purification using room-temperature ionic liquids , 2007 .

[131]  B. F. Goodrich,et al.  Experimental Measurements of Amine-Functionalized Anion-Tethered Ionic Liquids with Carbon Dioxide , 2011 .

[132]  Byung-chul Lee,et al.  Measurement of CO 2 Solubility in Ionic Liquids: [BMP][TfO] and [P14,6,6,6][Tf 2 N] by Measuring Bubble-Point Pressure , 2010 .

[133]  J. Brennecke,et al.  Ionic liquids: Innovative fluids for chemical processing , 2001 .

[134]  Joan F. Brennecke,et al.  Thermophysical Properties of Imidazolium-Based Ionic Liquids , 2004 .

[135]  Andrew L. Ferguson,et al.  Diffusivities of Gases in Room-Temperature Ionic Liquids: Data and Correlations Obtained Using a Lag-Time Technique , 2005 .

[136]  T. Schiestel,et al.  Gas solubilities in room temperature ionic liquids – Correlation between RTiL-molar mass and Henry's law constant , 2011 .

[137]  Kenneth R. Seddon,et al.  Ionic liquids. Green solvents for the future , 2000 .

[138]  J. Brennecke,et al.  Improving carbon dioxide solubility in ionic liquids. , 2007, The journal of physical chemistry. B.

[139]  Emilio J. González,et al.  Temperature Dependence and Structural Influence on the Thermophysical Properties of Eleven Commercial Ionic Liquids , 2012 .

[140]  S. Cheng,et al.  Review of relation between diffusivity and solvent viscosity in dilute liquid solutions , 1971 .

[141]  R. Smith,et al.  High-Pressure Densities of 1-Alkyl-3-methylimidazolium Hexafluorophosphates and 1-Alkyl-3-methylimidazolium Tetrafluoroborates at Temperatures from (313 to 473) K and at Pressures up to 200 MPa , 2009 .

[142]  Hui Jin,et al.  Physical properties of ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various anions and the bis(trifluoromethylsulfonyl)imide anion with various cations. , 2008, The journal of physical chemistry. B.

[143]  G. Maurer,et al.  Solubility of CO2 in the Ionic Liquid [bmim][PF6] , 2003 .

[144]  Ramana G. Reddy,et al.  Corrosion of steel in ionic liquids , 2003 .

[145]  C. Tomastik,et al.  Corrosion properties of ammonium based ionic liquids evaluated by SEM-EDX, XPS and ICP-OES , 2011 .

[146]  R. Sheldon,et al.  High-pressure phase behavior of systems with ionic liquids: Part V. The binary system carbon dioxide+1-butyl-3-methylimidazolium tetrafluoroborate , 2005 .

[147]  W. Shi,et al.  Molecular simulation and regular solution theory modeling of pure and mixed gas absorption in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N]). , 2008, The journal of physical chemistry. B.

[148]  H. Weingärtner,et al.  Understanding ionic liquids at the molecular level: facts, problems, and controversies. , 2008, Angewandte Chemie.

[149]  Michael H Abraham,et al.  Fast calculation of van der Waals volume as a sum of atomic and bond contributions and its application to drug compounds. , 2003, The Journal of organic chemistry.

[150]  Edward J Maginn,et al.  Measurement of SO2 solubility in ionic liquids. , 2006, The journal of physical chemistry. B.

[151]  M. Gomes Low-Pressure Solubility and Thermodynamics of Solvation of Carbon Dioxide, Ethane, and Hydrogen in 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide between Temperatures of 283 K and 343 K , 2007 .

[152]  R. Singer,et al.  Further investigation of the biodegradability of imidazolium ionic liquids , 2009 .

[153]  Joan F. Brennecke,et al.  Ionic Liquids for CO2 Capture and Emission Reduction , 2010 .

[154]  Marie Anheden,et al.  Denitrogenation (or Oxyfuel Concepts) , 2005 .

[155]  S. M. Mercer,et al.  CO2-triggered switchable solvents, surfactants, and other materials , 2012 .

[156]  M. Gomes,et al.  Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283 K and 343 K and at pressures close to atmospheric , 2006 .

[157]  Richard D. Noble,et al.  Perspective on ionic liquids and ionic liquid membranes , 2011 .

[158]  C. Eckert,et al.  Reversible ionic liquids designed for facile separations , 2010 .

[159]  Ilaria Perissi,et al.  High temperature corrosion properties of ionic liquids , 2006 .

[160]  Robin D. Rogers,et al.  Materials science: Reflections on ionic liquids , 2007, Nature.

[161]  R. Ludwig,et al.  Estimating enthalpies of vaporization of imidazolium-based ionic liquids from far-infrared measurements. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[162]  Christopher W. Jones,et al.  CO(2) capture from dilute gases as a component of modern global carbon management. , 2011, Annual review of chemical and biomolecular engineering.

[163]  Jason E. Bara,et al.  Room-Temperature Ionic Liquids: Temperature Dependence of Gas Solubility Selectivity , 2008 .

[164]  J. Bara,et al.  Evaluation of Alkylimidazoles as Physical Solvents for CO2/CH4 Separation , 2012 .

[165]  Brian J. Briscoe,et al.  Combining ionic liquids and supercritical fluids: in situ ATR-IR study of CO2 dissolved in two ionic liquids at high pressures , 2000 .

[166]  Robin D. Rogers,et al.  Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction , 1998 .

[167]  The solubility of mixtures of carbon dioxide and hydrogen sulphide in an aqueous dipa solution , 1977 .

[168]  A. E. Mather,et al.  The solubility of H2S and CO2 in aqueous monoethanolamine solutions , 1974 .

[169]  Joan F. Brennecke,et al.  High temperature separation of carbon dioxide/hydrogen mixtures using facilitated supported ionic liquid membranes ! , 2008 .

[170]  Jeff Tollefson,et al.  Low-cost carbon-capture project sparks interest , 2011, Nature.

[171]  A. Rodríguez,et al.  Toxicity and biodegradability of imidazolium ionic liquids. , 2008, Journal of hazardous materials.

[172]  A. Börner,et al.  Vapour pressure and enthalpy of vaporization of cyclic alkylene carbonates , 2008 .

[173]  L. I. Eide,et al.  Precombustion Decarbonisation Processes , 2005 .

[174]  Jason E. Bara,et al.  Interpretation of CO2 Solubility and Selectivity in Nitrile-Functionalized Room-Temperature Ionic Liquids Using a Group Contribution Approach , 2008 .

[175]  C. Eckert,et al.  Switchable Solvents Consisting of Amidine/Alcohol or Guanidine/Alcohol Mixtures , 2008 .

[176]  K. R. Seddon,et al.  Density, Speed of Sound, and Derived Thermodynamic Properties of Ionic Liquids over an Extended Pressure Range. 4. [C3mim][NTf2] and [C5mim][NTf2] , 2006 .

[177]  Nándor Nemestóthy,et al.  Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids , 2010 .

[178]  G. Davies,et al.  The diffusion of carbon dioxide in organic liquids , 1967 .

[179]  Madhusree Kundu,et al.  Density and Viscosity of Aqueous Solutions of (N-Methyldiethanolamine + Monoethanolamine), (N-Methyldiethanolamine + Diethanolamine), (2-Amino-2-methyl-1-propanol + Monoethanolamine), and (2-Amino-2-methyl-1-propanol + Diethanolamine) , 2003 .

[180]  C. Peters,et al.  Solubility of carbon dioxide in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide , 2007 .

[181]  D. Armstrong,et al.  Ionic liquids in separations. , 2007, Accounts of chemical research.

[182]  Joan F Brennecke,et al.  Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-hexyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide: comparison to other ionic liquids. , 2007, Accounts of chemical research.

[183]  G. Hochgesand,et al.  Rectisol and Purisol , 1970 .

[184]  R. Sheldon Catalytic reactions in ionic liquids. , 2001, Chemical communications.

[185]  L. J. Lozano,et al.  Recent advances in supported ionic liquid membrane technology , 2011 .

[186]  J. Jacquemin,et al.  Influence of the Cation on the Solubility of CO2 and H2 in Ionic Liquids Based on the Bis(trifluoromethylsulfonyl)imide Anion , 2007 .

[187]  B. Smit,et al.  Carbon dioxide capture: prospects for new materials. , 2010, Angewandte Chemie.

[188]  B. F. Goodrich,et al.  Equimolar CO(2) absorption by anion-functionalized ionic liquids. , 2010, Journal of the American Chemical Society.

[189]  Wenchuan Wang,et al.  Screening of ionic liquids to capture CO2 by COSMO-RS and experiments , 2008 .

[190]  K. Růžička,et al.  Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide , 2011 .

[191]  J. Brennecke,et al.  High-Pressure Phase Behavior of Carbon Dioxide with Imidazolium-Based Ionic Liquids , 2004 .

[192]  D. Macfarlane,et al.  Thermal Degradation of Ionic Liquids at Elevated Temperatures , 2004 .

[193]  A. Shariati,et al.  High-pressure phase behavior of the binary ionic liquid system 1-octyl-3-methylimidazolium tetrafluoroborate + carbon dioxide , 2006 .

[194]  M. Shiflett,et al.  Phase Behavior of Carbon Dioxide in Ionic Liquids: [emim][Acetate], [emim][Trifluoroacetate], and [emim][Acetate] + [emim][Trifluoroacetate] Mixtures , 2009 .

[195]  Edward J. Maginn,et al.  Vapor–Liquid Coexistence and Critical Behavior of Ionic Liquids via Molecular Simulations , 2011 .

[196]  E. Maginn,et al.  Molecular Dynamics Study of the Ionic Liquid 1-n-Butyl-3-methylimidazolium Hexafluorophosphate , 2002 .

[197]  M. Freemantle DESIGNER SOLVENTS : IONIC LIQUIDS MAY BOOST CLEAN TECHNOLOGY DEVELOPMENT , 1998 .

[198]  W. Hayduk,et al.  Density, viscosity, and carbon dioxide solubility and diffusivity in aqueous ethylene glycol solutions , 1971 .

[199]  Y. S. Sistla,et al.  Validation and Prediction of the Temperature-Dependent Henry's Constant for CO2–Ionic Liquid Systems Using the Conductor-like Screening Model for Realistic Solvation (COSMO-RS) , 2011 .

[200]  A. Yokozeki,et al.  Separation of Carbon Dioxide and Sulfur Dioxide Gases Using Room-Temperature Ionic Liquid [hmim][Tf2N] , 2009 .

[201]  David R. Luebke,et al.  Experimental investigation of the permeability and selectivity of supported ionic liquid membranes for CO2/He separation at temperatures up to 125 °C , 2007 .

[202]  A. Arce,et al.  Physical Properties of Binary and Ternary Mixtures of Ethyl Acetate, Ethanol, and 1-Octyl-3-methyl-imidazolium Bis(trifluoromethylsulfonyl)imide at 298.15 K , 2009 .

[203]  Alan E. Mather,et al.  The solubility of CO2 in a 30 mass percent monoethanolamine solution , 1995 .

[204]  Inmaculada Ortiz,et al.  Liquid membrane technology: fundamentals and review of its applications , 2010 .

[205]  J. Kang,et al.  Solubility of mixed gases containing carbon dioxide in ionic liquids: Measurements and predictions , 2007 .

[206]  D. Heldebrant,et al.  Synthesis of ammonia borane for hydrogen storage applications , 2008 .

[207]  Christopher Hardacre,et al.  Catalysis in ionic liquids. , 2007, Chemical reviews.

[208]  Meng-Hui Li,et al.  Carbon dioxide solubility in some ionic liquids at moderate pressures , 2009 .

[209]  Gary T. Rochelle,et al.  Amine volatility in CO2 capture , 2010 .

[210]  J. Sangster,et al.  Viscosities of concentrated aqueous solutions of some 1:1, 2:1, and 3:1 nitrates at 25.degree.C , 1981 .

[211]  P. Kulkarni,et al.  Toxicological evaluation on human colon carcinoma cell line (CaCo-2) of ionic liquids based on imidazolium, guanidinium, ammonium, phosphonium, pyridinium and pyrrolidinium cations , 2009 .

[212]  John B. Kerr,et al.  Physicochemical properties and toxicities of hydrophobic piperidinium and pyrrolidinium ionic liquids , 2007 .

[213]  A. Yokozeki,et al.  Carbon Dioxide Capture Using Ionic Liquid 1-Butyl-3-methylimidazolium Acetate , 2010 .

[214]  R. Singer,et al.  Ionic Liquids: The Neglected Issues , 2005 .

[215]  Eduardo Filipe,et al.  On the critical temperature, normal boiling point, and vapor pressure of ionic liquids. , 2005, The journal of physical chemistry. B.

[216]  C. Eckert,et al.  Single component, reversible ionic liquids for energy applications , 2010 .

[217]  P. Scammells,et al.  Design and Preparation of Room-Temperature Ionic Liquids Containing Biodegradable Side Chains , 2002 .

[218]  P. Scovazzo,et al.  Gas permeabilities, solubilities, diffusivities, and diffusivity correlations for ammonium-based room temperature ionic liquids with comparison to imidazolium and phosphonium RTIL data , 2009 .

[219]  Paul Scovazzo,et al.  Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research , 2009 .

[220]  David J. Heldebrant,et al.  Organic liquid CO2 capture agents with high gravimetric CO2 capacity , 2008 .

[221]  A. Wells,et al.  On the Freshwater Ecotoxicity and Biodegradation Properties of Some Common Ionic Liquids , 2006 .

[222]  L. Hepler,et al.  Solubilities of carbon dioxide, hydrogen sulfide and sulfur dioxide in physical solvents , 1992 .

[223]  K. R. Seddon,et al.  The distillation and volatility of ionic liquids , 2006, Nature.

[224]  Paul Scovazzo,et al.  Gas Solubilities in Room-Temperature Ionic Liquids , 2004 .

[225]  Sheng Dai,et al.  Examination of the Potential of Ionic Liquids for Gas Separations , 2005 .

[226]  J. Bara,et al.  Reactive and Reversible Ionic Liquids for CO2 Capture and Acid Gas Removal , 2012 .

[227]  S. A. Stern,et al.  Polymers for gas separations: the next decade , 1994 .

[228]  Qian Yang,et al.  Recent advances in supported liquid membrane technology , 2007 .

[229]  Haoran Li,et al.  Reversible and robust CO2 capture by equimolar task-specific ionic liquid/superbase mixtures , 2010 .

[230]  G. Maurer,et al.  Solubility of CO2 in the Ionic Liquids [bmim][CH3SO4] and [bmim][PF6] , 2006 .

[231]  Robin D. Rogers,et al.  Ionic Liquids--Solvents of the Future? , 2003, Science.

[232]  Sergey P. Verevkin Priv.-Doz. Predicting Enthalpy of Vaporization of Ionic Liquids: A Simple Rule for a Complex Property† , 2008 .

[233]  J. Brennecke,et al.  Why Is CO2 so soluble in imidazolium-based ionic liquids? , 2004, Journal of the American Chemical Society.

[234]  Y. Kameda,et al.  Solution structures of 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid saturated with CO2: Experimental evidence of specific anion-CO2 interaction. , 2005, The journal of physical chemistry. B.

[235]  Haoran Li,et al.  Carbon dioxide capture by superbase-derived protic ionic liquids. , 2010, Angewandte Chemie.

[236]  J. Torrecilla,et al.  Volumetric, Transport and Surface Properties of [bmim][MeSO4] and [emim][EtSO4] Ionic Liquids As a Function of Temperature , 2008 .

[237]  R. Singer,et al.  Phosphonium ionic liquids: design, synthesis and evaluation of biodegradability , 2009 .

[238]  C. Eckert,et al.  The reaction of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) with carbon dioxide. , 2005, The Journal of organic chemistry.

[239]  R. Singer,et al.  Further studies on the biodegradation of ionic liquids , 2010 .

[240]  R. Baltus,et al.  Experimental Measurement of the Solubility and Diffusivity of CO2 in Room-Temperature Ionic Liquids Using a Transient Thin-Liquid-Film Method , 2007 .

[241]  Haoran Li,et al.  Tuning the basicity of ionic liquids for equimolar CO2 capture. , 2011, Angewandte Chemie.

[242]  S. Stolte,et al.  PAPER www.rsc.org/greenchem | Green Chemistry Effects , 2007 .

[243]  F. Rodríguez,et al.  Understanding the Physical Absorption of CO2 in Ionic Liquids Using the COSMO-RS Method , 2011 .

[244]  T. Gefflaut,et al.  Effect of fluorination and size of the alkyl side-chain on the solubility of carbon dioxide in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquids. , 2010, The journal of physical chemistry. B.

[245]  J. Coutinho,et al.  A group contribution method for viscosity estimation of ionic liquids , 2008 .

[246]  Jason E. Bara,et al.  Room-Temperature Ionic Liquid−Amine Solutions: Tunable Solvents for Efficient and Reversible Capture of CO2 , 2008 .

[247]  A. Latała,et al.  Toxicity of imidazolium and pyridinium based ionic liquids towards algae. Chlorella vulgaris, Oocystis submarina (green algae) and Cyclotella meneghiniana, Skeletonema marinoi (diatoms) , 2009 .

[248]  L. Robeson,et al.  The upper bound revisited , 2008 .

[249]  G. Maurer,et al.  Solubility of the single gases H2 and CO in the ionic liquid [bmim][CH3SO4] , 2007 .

[250]  F. Larachi,et al.  Ionic liquids for CO2 capture—Development and progress , 2010 .

[251]  S. Dai,et al.  Benzyl-Functionalized Room Temperature Ionic Liquids for CO2/N2 Separation , 2011 .

[252]  Gary T. Rochelle,et al.  Volatility of aqueous amines in CO2 capture , 2011 .

[253]  Clair Gough State of the Art in Carbon Dioxide Capture and Storage in the UK: an experts' review , 2008 .

[254]  William F. Schneider,et al.  Molecular Design of High Capacity, Low Viscosity, Chemically Tunable Ionic Liquids for CO2 Capture , 2010 .

[255]  Charles A. Eckert,et al.  Green chemistry: Reversible nonpolar-to-polar solvent , 2005, Nature.

[256]  A. Ponter,et al.  DIFFUSION OF CARBON DIOXIDE INTO PRIMARY ALCOHOLS AND METHYL CELLULOSE ETHER SOLUTIONS , 1971 .

[257]  G. Allmaier,et al.  Thermo-oxidative stability and corrosion properties of ammonium based ionic liquids , 2012 .

[258]  Chengdong Zhang,et al.  Biodegradation of pyridinium-based ionic liquids by an axenic culture of soil Corynebacteria , 2010 .

[259]  Collin R. Becker,et al.  Low Pressure Hydrocarbon Solubility in Room Temperature Ionic Liquids Containing Imidazolium Rings Interpreted Using Regular Solution Theory , 2005 .

[260]  M. Shiflett,et al.  Separation of Carbon Dioxide and Sulfur Dioxide Using Room-Temperature Ionic Liquid [bmim][MeSO4] , 2010 .

[261]  S. Verevkin,et al.  Experimental vapor pressures of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides and a correlation scheme for estimation of vaporization enthalpies of ionic liquids. , 2006, The journal of physical chemistry. A.

[262]  I. Marrucho,et al.  High carbon dioxide solubilities in trihexyltetradecylphosphonium-based ionic liquids , 2010 .

[263]  Timothy E. Fout,et al.  Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program ☆ , 2008 .

[264]  A. Maiti Theoretical screening of ionic liquid solvents for carbon capture. , 2009, ChemSusChem.

[265]  Paul Scovazzo,et al.  Solubility, Diffusivity, and Permeability of Gases in Phosphonium-Based Room Temperature Ionic Liquids: Data and Correlations , 2007 .

[266]  A. Shariati,et al.  High-pressure phase behavior of systems with ionic liquids , 2004 .

[267]  E. Schlücker,et al.  Ionic Liquids as Operating Fluids in High Pressure Applications , 2007 .

[268]  K. R. Harris,et al.  Temperature and Pressure Dependence of the Viscosity of the Ionic Liquid 1-Butyl-3-methylimidazolium Tetrafluoroborate: Viscosity and Density Relationships in Ionic Liquids , 2007 .