A new Galerkin spectral element method for fourth-order boundary value problems

In this paper, we propose a new Galerkin spectral element method for one-dimensional fourth-order boundary value problems. We first introduce some quasi-orthogonal approximations in one dimension, and establish a series of results on these approximations, which serve as powerful tools in the spectral element method. By applying these results to the fourth-order boundary value problems, we establish sharp and error bounds of the Galerkin spectral element method. The efficient algorithm is implemented in detail. Numerical results demonstrate its high accuracy, and confirm the theoretical analysis well.

[1]  Yvon Maday,et al.  A spectral element method for the time-dependent two-dimensional Euler equations: applications to flow simulations , 1998 .

[2]  Bernard Bialecki,et al.  A Legendre Spectral Galerkin Method for the Biharmonic Dirichlet Problem , 2000, SIAM J. Sci. Comput..

[3]  Jie Shen,et al.  An efficient direct parallel spectral-element solver for separable elliptic problems , 2007, J. Comput. Phys..

[4]  Second order Jacobi approximation with applications to fourth-order differential equations , 2005 .

[5]  G. Ben-yu,et al.  Jacobi and Laguerre quasi-orthogonal approximations and related interpolations , 2012 .

[6]  Jie Shen,et al.  A Triangular Spectral Element Method Using Fully Tensorial Rational Basis Functions , 2009, SIAM J. Numer. Anal..

[7]  B. Guo,et al.  Petrov-Galerkin spectral element method for mixed inhomogeneous boundary value problems on polygons , 2010 .

[8]  Jie Shen,et al.  Spectral and High-Order Methods with Applications , 2006 .

[9]  Jie Shen,et al.  Optimal Spectral-Galerkin Methods Using Generalized Jacobi Polynomials , 2006, J. Sci. Comput..

[10]  C. P. Gupta,et al.  Existence and uniqueness theorems for the bending of an elastic beam equation , 1988 .

[11]  Jie Shen,et al.  Generalized Jacobi polynomials/functions and their applications , 2009 .

[12]  Ting-Ting Shen,et al.  A Legendre Petrov-Galerkin method for fourth-order differential equations , 2011, Comput. Math. Appl..

[13]  Tao Sun,et al.  Jacobi and Laguerre quasi-orthogonal approximations and related interpolations , 2013, Math. Comput..

[14]  Jie Shen,et al.  Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..

[15]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[16]  Qingqu Zhuang,et al.  A Legendre spectral-element method for the one-dimensional fourth-order equations , 2011, Appl. Math. Comput..

[17]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[18]  Wilhelm Heinrichs Domain decomposition for fourth-order problems , 1993 .

[19]  Chuanju Xu,et al.  Stabilization Methods for Spectral Element Computations of Incompressible Flows , 2006, J. Sci. Comput..

[20]  ShenJie Efficient spectral-Galerkin method I , 1994 .

[21]  Yvon Maday,et al.  Some spectral approximations of two-dimensional fourth-order problems , 1989 .

[22]  Paola Gervasio,et al.  Stabilized spectral element approximation for the Navier–Stokes equations , 1998 .

[23]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[24]  A. R. Aftabizadeh Existence and uniqueness theorems for fourth-order boundary value problems , 1986 .

[25]  Siraj-ul-Islam,et al.  A class of methods based on non-polynomial spline functions for the solution of a special fourth-order boundary-value problems with engineering applications , 2006, Appl. Math. Comput..

[26]  T. Sun,et al.  A Petrov–Galerkin spectral method for fourth‐order problems , 2014 .

[27]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[28]  B. Guo,et al.  Spectral Methods and Their Applications , 1998 .

[29]  Ali H. Bhrawy,et al.  Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials , 2008 .

[30]  C. Chia Nonlinear analysis of plates , 1980 .

[31]  Seng-Kee Chua,et al.  On Weighted Sobolev Spaces , 1996, Canadian Journal of Mathematics.

[32]  Ben-yu Guo,et al.  Multidomain pseudospectral methods for nonlinear convection-diffusion equations , 2011 .