Multigrid methods for space fractional partial differential equations
暂无分享,去创建一个
[1] Enrico Valdinoci,et al. Variational methods for non-local operators of elliptic type , 2012 .
[2] Hong Wang,et al. A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations , 2013, J. Comput. Phys..
[3] Raymond H. Chan,et al. Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..
[4] Jinchao Xu,et al. Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..
[5] Ercília Sousa,et al. Finite difference approximations for a fractional advection diffusion problem , 2009, J. Comput. Phys..
[6] Siu-Long Lei,et al. Circulant and skew-circulant splitting iteration for fractional advection–diffusion equations , 2014, Int. J. Comput. Math..
[7] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[8] J. Pasciak,et al. The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms , 1991 .
[9] E. Valdinoci,et al. Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.
[10] J. P. Roop. Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R 2 , 2006 .
[11] T. Kaczorek,et al. Fractional Differential Equations , 2015 .
[12] Mark M. Meerschaert,et al. A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..
[13] M. Meerschaert,et al. VECTOR GRÜNWALD FORMULA FOR FRACTIONAL DERIVATIVES , 2004 .
[14] Weihua Deng,et al. Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..
[15] Xiao-Qing Jin,et al. Preconditioned iterative methods for fractional diffusion equation , 2014, J. Comput. Phys..
[16] Hong Wang,et al. Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations , 2014, J. Comput. Phys..
[17] Daniel B. Szyld,et al. An introduction to iterative Toeplitz solvers , 2009, Math. Comput..
[18] X. Li,et al. Existence and Uniqueness of the Weak Solution of the Space-Time Fractional Diffusion Equation and a Spectral Method Approximation , 2010 .
[19] M. Meerschaert,et al. Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .
[20] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[21] Olof B. Widlund,et al. Towards a Unified Theory of Domain Decomposition Algorithms for Elliptic Problems , 2015 .
[22] Panayot S. Vassilevski,et al. Computational scales of Sobolev norms with application to preconditioning , 2000, Math. Comput..
[23] Fawang Liu,et al. Numerical solution of the space fractional Fokker-Planck equation , 2004 .
[24] W. Rudin. Real and complex analysis, 3rd ed. , 1987 .
[25] Michael K. Ng,et al. Preconditioning Techniques for Diagonal-times-Toeplitz Matrices in Fractional Diffusion Equations , 2014, SIAM J. Sci. Comput..
[26] Christina Kluge. Semi Groups Of Operators And Approximation , 2016 .
[27] B. Henry,et al. The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .
[28] M. Chipot. Finite Element Methods for Elliptic Problems , 2000 .
[29] L. Tartar. An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .
[30] Hong Wang,et al. An O(N log2N) alternating-direction finite difference method for two-dimensional fractional diffusion equations , 2011, J. Comput. Phys..
[31] Norbert Heuer,et al. Numerical Approximation of a Time Dependent, Nonlinear, Space-Fractional Diffusion Equation , 2007, SIAM J. Numer. Anal..
[32] Mingrong Cui,et al. Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..
[33] P. Oswald,et al. Multilevel norms forH−1/2 , 1998, Computing.
[34] Chuanju Xu,et al. Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..
[35] W. Rudin. Real and complex analysis , 1968 .
[36] Raymond H. Chan,et al. An Introduction to Iterative Toeplitz Solvers (Fundamentals of Algorithms) , 2007 .
[37] Hong Wang,et al. A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations and its efficient implementation , 2013, J. Comput. Phys..
[38] V. Ervin,et al. Variational solution of fractional advection dispersion equations on bounded domains in ℝd , 2007 .
[39] M. Meerschaert,et al. Finite difference methods for two-dimensional fractional dispersion equation , 2006 .
[40] J. P. Roop. Variational Solution of the Fractional Advection Dispersion Equation , 2004 .
[41] V. Ervin,et al. Variational formulation for the stationary fractional advection dispersion equation , 2006 .
[42] J. Klafter,et al. The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .
[43] Barry F. Smith,et al. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .
[44] Siu-Long Lei,et al. A circulant preconditioner for fractional diffusion equations , 2013, J. Comput. Phys..
[45] Zhiqiang Zhou,et al. Finite Element Multigrid Method for the Boundary Value Problem of Fractional Advection Dispersion Equation , 2013, J. Appl. Math..
[46] Hong Wang,et al. A direct O(N log2 N) finite difference method for fractional diffusion equations , 2010, J. Comput. Phys..
[47] O. Marichev,et al. Fractional Integrals and Derivatives: Theory and Applications , 1993 .
[48] Hong Wang,et al. A fast characteristic finite difference method for fractional advection–diffusion equations , 2011 .
[49] D. Benson,et al. Multidimensional advection and fractional dispersion. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[50] Hai-Wei Sun,et al. Multigrid method for fractional diffusion equations , 2012, J. Comput. Phys..
[51] Mihály Kovács,et al. Numerical solutions for fractional reaction-diffusion equations , 2008, Comput. Math. Appl..