Multigrid methods for space fractional partial differential equations

We propose some multigrid methods for solving the algebraic systems resulting from finite element approximations of space fractional partial differential equations (SFPDEs). It is shown that our multigrid methods are optimal, which means the convergence rates of the methods are independent of the mesh size and mesh level. Moreover, our theoretical analysis and convergence results do not require regularity assumptions of the model problems. Numerical results are given to support our theoretical findings.

[1]  Enrico Valdinoci,et al.  Variational methods for non-local operators of elliptic type , 2012 .

[2]  Hong Wang,et al.  A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations , 2013, J. Comput. Phys..

[3]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[4]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[5]  Ercília Sousa,et al.  Finite difference approximations for a fractional advection diffusion problem , 2009, J. Comput. Phys..

[6]  Siu-Long Lei,et al.  Circulant and skew-circulant splitting iteration for fractional advection–diffusion equations , 2014, Int. J. Comput. Math..

[7]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[8]  J. Pasciak,et al.  The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms , 1991 .

[9]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[10]  J. P. Roop Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R 2 , 2006 .

[11]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[12]  Mark M. Meerschaert,et al.  A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..

[13]  M. Meerschaert,et al.  VECTOR GRÜNWALD FORMULA FOR FRACTIONAL DERIVATIVES , 2004 .

[14]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[15]  Xiao-Qing Jin,et al.  Preconditioned iterative methods for fractional diffusion equation , 2014, J. Comput. Phys..

[16]  Hong Wang,et al.  Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations , 2014, J. Comput. Phys..

[17]  Daniel B. Szyld,et al.  An introduction to iterative Toeplitz solvers , 2009, Math. Comput..

[18]  X. Li,et al.  Existence and Uniqueness of the Weak Solution of the Space-Time Fractional Diffusion Equation and a Spectral Method Approximation , 2010 .

[19]  M. Meerschaert,et al.  Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .

[20]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[21]  Olof B. Widlund,et al.  Towards a Unified Theory of Domain Decomposition Algorithms for Elliptic Problems , 2015 .

[22]  Panayot S. Vassilevski,et al.  Computational scales of Sobolev norms with application to preconditioning , 2000, Math. Comput..

[23]  Fawang Liu,et al.  Numerical solution of the space fractional Fokker-Planck equation , 2004 .

[24]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[25]  Michael K. Ng,et al.  Preconditioning Techniques for Diagonal-times-Toeplitz Matrices in Fractional Diffusion Equations , 2014, SIAM J. Sci. Comput..

[26]  Christina Kluge Semi Groups Of Operators And Approximation , 2016 .

[27]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[28]  M. Chipot Finite Element Methods for Elliptic Problems , 2000 .

[29]  L. Tartar An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .

[30]  Hong Wang,et al.  An O(N log2N) alternating-direction finite difference method for two-dimensional fractional diffusion equations , 2011, J. Comput. Phys..

[31]  Norbert Heuer,et al.  Numerical Approximation of a Time Dependent, Nonlinear, Space-Fractional Diffusion Equation , 2007, SIAM J. Numer. Anal..

[32]  Mingrong Cui,et al.  Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..

[33]  P. Oswald,et al.  Multilevel norms forH−1/2 , 1998, Computing.

[34]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[35]  W. Rudin Real and complex analysis , 1968 .

[36]  Raymond H. Chan,et al.  An Introduction to Iterative Toeplitz Solvers (Fundamentals of Algorithms) , 2007 .

[37]  Hong Wang,et al.  A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations and its efficient implementation , 2013, J. Comput. Phys..

[38]  V. Ervin,et al.  Variational solution of fractional advection dispersion equations on bounded domains in ℝd , 2007 .

[39]  M. Meerschaert,et al.  Finite difference methods for two-dimensional fractional dispersion equation , 2006 .

[40]  J. P. Roop Variational Solution of the Fractional Advection Dispersion Equation , 2004 .

[41]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .

[42]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[43]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[44]  Siu-Long Lei,et al.  A circulant preconditioner for fractional diffusion equations , 2013, J. Comput. Phys..

[45]  Zhiqiang Zhou,et al.  Finite Element Multigrid Method for the Boundary Value Problem of Fractional Advection Dispersion Equation , 2013, J. Appl. Math..

[46]  Hong Wang,et al.  A direct O(N log2 N) finite difference method for fractional diffusion equations , 2010, J. Comput. Phys..

[47]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[48]  Hong Wang,et al.  A fast characteristic finite difference method for fractional advection–diffusion equations , 2011 .

[49]  D. Benson,et al.  Multidimensional advection and fractional dispersion. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  Hai-Wei Sun,et al.  Multigrid method for fractional diffusion equations , 2012, J. Comput. Phys..

[51]  Mihály Kovács,et al.  Numerical solutions for fractional reaction-diffusion equations , 2008, Comput. Math. Appl..