Degradation Mitigation in Polymer Electrolyte Membranes Using Cerium Oxide as a Regenerative Free-Radical Scavenger

The efficacy of CeO 2 nanoparticles in mitigating free-radical-induced polymer electrolyte membrane (PEM) degradation is investigated. Commercially obtained CeO 2 and nanoparticles synthesized in-house were incorporated within a recast Nafion membrane. Membrane electrode assemblies were prepared using Nafion and Nafion-CeO 2 composite membranes (0.5, 1, and 3 wt % CeO 2 ). The composite membranes exhibited very similar proton conductivities (∼35 mS/cm) and hydrogen crossover (∼ 1 mA/cm 2 ) as Nafion. However, the fluoride emission rate (from accelerated tests) was lowered by more than 1 order of magnitude upon addition of CeO 2 into the Nafion membrane, suggesting that CeO 2 nanoparticles have tremendous potential to greatly enhance membrane durability.

[1]  E. Roduner,et al.  EPR investigation of HO/ radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes , 1999 .

[2]  S. Chan,et al.  Ceria nanoparticles: Size, size distribution, and shape , 2004 .

[3]  Y. Li,et al.  Synthesis of CeO2 nanoparticles by mechanochemical processing and the inhibiting action of NaCl on particle agglomeration , 2005 .

[4]  S. Seal,et al.  Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. , 2007, Chemical communications.

[5]  D. Curtin,et al.  Advanced materials for improved PEMFC performance and life , 2004 .

[6]  Mu Pan,et al.  Degradation behavior of membrane–electrode-assembly materials in 10-cell PEMFC stack , 2006 .

[7]  K. Kakegawa,et al.  Synthesis of CeO2 Spherical Fine Particles by Homogeneous Precipitation Method with Polyethylene Glycol , 2002 .

[8]  A. Kasuya,et al.  Structural study on monosize CeO2-x nano-particles , 1999 .

[9]  Gary L. Messing,et al.  Ceramic Powder Synthesis by Spray Pyrolysis , 1993 .

[10]  L. Luo,et al.  Consolidation and properties of Gd_0.1Ce_0.9O_1.95 nanoparticles for solid-oxide fuel cell electrolytes , 2006 .

[11]  A. Kasuya,et al.  Blue shift in ultraviolet absorption spectra of monodisperse CeO2−x nanoparticles , 2000 .

[12]  F. Miyaji,et al.  Formation and structure of zinc-substituted calcium hydroxyapatite , 2005 .

[13]  D. Wilkinson,et al.  Degradation of polymer electrolyte membranes , 2006 .

[14]  Eiji Endoh,et al.  Degradation study of MEA for PEMFCs under low humidity conditions , 2004 .

[15]  Y. Xiong,et al.  Miscibility gap in CeO2–ZrO2–YO1.5 system as an electrode of solid oxide fuel cell , 2001 .

[16]  Minoru Inaba,et al.  Durability of perfluorinated ionomer membrane against hydrogen peroxide , 2006 .

[17]  S. Schlick,et al.  Nafion Perfluorinated Membranes Treated in Fenton Media: Radical Species Detected by ESR Spectroscopy , 2004 .

[18]  T. Sakata,et al.  Synthesis of cerium oxide nanoparticles by hydrothermal crystallization with citric acid , 2002 .

[19]  M. Hein,et al.  In-situ spin trap electron paramagnetic resonance study of fuel cell processes , 2004 .

[20]  F. Zhang,et al.  Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy , 2004 .

[21]  Qin Xin,et al.  Test on the degradation of direct methanol fuel cell , 2006 .

[22]  S. Babu,et al.  Chemical mechanical polishing of thermal oxide films using silica particles coated with ceria , 2002 .

[23]  K. Okuyama,et al.  Novel Route to Nanoparticle Synthesis by Salt-Assisted Aerosol Decomposition , 2001 .

[24]  M. Zachariah,et al.  Synthesis of Nanoporous Metal Oxide Particles by a New Inorganic Matrix Spray Pyrolysis Method , 2002 .

[25]  Hongyuan Chen,et al.  Preparation of nanocrystalline ceria particles by sonochemical and microwave assisted heating methods , 2002 .

[26]  Y. Fujishiro,et al.  Synthesis and microstructure of calcia doped ceria as UV filters , 2002 .

[27]  Qing Peng,et al.  Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes , 2005 .

[28]  Changrong Xia,et al.  Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing , 2001 .

[29]  Chung‐Hsin Lu,et al.  Synthesis of cerium hydroxycarbonate powders via a hydrothermal technique , 2002 .

[30]  Weijun Yu,et al.  Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol. , 2007, Inorganic chemistry.

[31]  J. T. Kummer,et al.  Low-concentration supported precious metal catalysts prepared by thermal transport , 1987 .

[32]  F. Zhang,et al.  Visible thermal emission from sub-band-gap laser excited cerium dioxide particles , 2002 .

[33]  V. Ramani,et al.  SPEEK/functionalized silica composite membranes for polymer electrolyte fuel cells , 2007 .

[34]  D. Schiraldi,et al.  Perfluorinated Polymer Electrolyte Membrane Durability , 2006 .

[35]  Kevin Kendall,et al.  A small solid oxide fuel cell demonstrator for microelectronic applications , 1998 .

[36]  M. De Francesco,et al.  Nafion degradation in PEFCs from end plate iron contamination , 2003 .

[37]  D. Trimm,et al.  The catalytic activity and selectivity of supported vanadia catalysts doped with alkali metal sulphates.: I. Structural re-organisations during pre-treatment and use , 1985 .

[38]  W. L. Worrell,et al.  Development of solid oxide fuel cells for the direct oxidation of hydrocarbon fuels , 2002 .

[39]  A. Panchenko,et al.  In situ EPR investigation of polymer electrolyte membrane degradation in fuel cell applications , 2004 .

[40]  David Schubert,et al.  Cerium and yttrium oxide nanoparticles are neuroprotective. , 2006, Biochemical and biophysical research communications.

[41]  Sanjeev Mukerjee,et al.  Investigation of Durability Issues of Selected Nonfluorinated Proton Exchange Membranes for Fuel Cell Application , 2006 .

[42]  S. Seal,et al.  Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide , 2005 .

[43]  B. Powell,et al.  Preparation of Cerium Dioxide Powders for Catalyst Supports , 1988 .

[44]  Eiji Endoh,et al.  Degradation study of MEA for PEMFCs under low humidity conditions , 2004 .

[45]  S. Singhal,et al.  Mechanochemical synthesis of nano-sized CeO2 , 2000 .

[46]  S. Seal,et al.  Electron paramagnetic study on radical scavenging properties of ceria nanoparticles , 2007 .

[47]  Sung-Churl Choi,et al.  Crystallization behavior of nano-ceria powders by hydrothermal synthesis using a mixture of H2O2 and NH4OH , 2004 .

[48]  Limiao Chen Hydrothermal synthesis and ethanol sensing properties of CeVO4 and CeVO4–CeO2 powders , 2006 .

[49]  A. Chakraborty,et al.  Method of Fabricating Ceria‐Stabilized Tetragonal Zirconia Polycrystals , 1988 .

[50]  G. Adachi,et al.  Characterization of Cerium(IV) Oxide Ultrafine Particles Prepared Using Reversed Micelles , 1997 .

[51]  James M. Fenton,et al.  Membrane Degradation Mechanisms in PEMFCs , 2006, ECS Transactions.

[52]  S. Qing-de,et al.  Optical properties of nanocrystalline ceria. , 1997, Applied optics.

[53]  A. Bachiorrini,et al.  Interaction of mullite with some polluting oxides in diesel vehicle filters , 1999 .

[54]  T. W. Sherman,et al.  A polymer electrolyte fuel cell life test: 3 years of continuous operation , 2006 .

[55]  X. You,et al.  Preparation of nano-sized CeO2 by mechanochemical reaction of cerium carbonate with sodium hydroxide , 2004 .

[56]  V. Kosynkin,et al.  The study of process production of polishing powder based on cerium dioxide , 2000 .

[57]  N. Sammes,et al.  Mechanical properties and electrochemical characterisation of extruded doped cerium oxide for use as an electrolyte for solid oxide fuel cells , 1998 .

[58]  C. Leonelli,et al.  Nanosized CeO2 powders obtained by flux method , 1999 .

[59]  G. Sundholm,et al.  Membrane Durability in a PEM Fuel Cell Studied Using PVDF Based Radiation Grafted Membranes , 2003 .

[60]  Fang Wang,et al.  A degradation study of Nafion proton exchange membrane of PEM fuel cells , 2007 .

[61]  Rangachary Mukundan,et al.  Solid-state mixed potential gas sensors: theory, experiments and challenges , 2000 .

[62]  P. Trogadas,et al.  Pt/C/MnO2 hybrid electrocatalysts for degradation mitigation in polymer electrolyte fuel cells , 2007 .

[63]  S. Logothetidis,et al.  Optical performance of nanocrystalline transparent ceria films , 2002 .

[64]  James L. Horan,et al.  The Effect of Heteropoly Acids on Stability of PFSA PEMs under Fuel Cell Operation , 2007 .

[65]  Fuqiang Liu,et al.  Degradation mechanism of polystyrene sulfonic acid membrane and application of its composite membranes in fuel cells , 2003 .

[66]  S. Yin,et al.  Synthesis and UV-shielding properties of ZnO- and CaO-doped CeO2 via soft solution chemical process , 2002 .

[67]  P. McCormick,et al.  Synthesis of Ultrafine Ceria Powders by Mechanochemical Processing , 2004 .

[68]  Z. Xue,et al.  Synthesis of Cerium(IV) Oxide Ultrafine Particles by Solid-State Reactions , 2004 .

[69]  E. Podlaha,et al.  Electrosynthesis of Nanocrystalline Ceria-Zirconia , 2001 .

[70]  Zhanpeng Jin,et al.  Thermodynamic Assessment of the Lithium‐Borate System , 2000 .