A tight runtime analysis for the cGA on jump functions: EDAs can cross fitness valleys at no extra cost

We prove that the compact genetic algorithm (cGA) with hypothetical population size [MATH HERE] poly(n) with high probability finds the optimum of any n-dimensional jump function with jump size [MATH HERE] ln n in [MATH HERE] iterations. Since it is known that the cGA with high probability needs at least [MATH HERE] iterations to optimize the unimodal OneMax function, our result shows that the cGA in contrast to most classic evolutionary algorithms here is able to cross mo derate-sized valleys of low fitness at no extra cost. Our runtime guarantee improves over the recent upper bound O(µn1.5 log n) valid for µ = Ω(n3.5+ε) of Hasenöhrl and Sutton (GECCO 2018). For the best choice of the hypothetical population size, this result gives a runtime guarantee of O(n5+ε), whereas ours gives O(n log n). We also provide a simple general method based on parallel runs that, under mild conditions, (i) overcomes the need to specify a suitable population size, but gives a performance close to the one stemming from the best-possible population size, and (ii) transforms EDAs with high-probability performance guarantees into EDAs with similar bounds on the expected runtime.

[1]  Benjamin Doerr,et al.  Probabilistic Tools for the Analysis of Randomized Optimization Heuristics , 2018, Theory of Evolutionary Computation.

[2]  Pietro Simone Oliveto,et al.  Fast Artificial Immune Systems , 2018, PPSN.

[3]  Benjamin Doerr,et al.  Edge-based representation beats vertex-based representation in shortest path problems , 2010, GECCO '10.

[4]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[5]  Carsten Witt,et al.  Theory of estimation-of-distribution algorithms , 2018, GECCO.

[6]  Thomas Jansen,et al.  The Analysis of Evolutionary Algorithms—A Proof That Crossover Really Can Help , 2002, Algorithmica.

[7]  Dirk Sudholt,et al.  Update Strength in EDAs and ACO: How to Avoid Genetic Drift , 2016, GECCO.

[8]  Thomas Jansen,et al.  On the analysis of the (1+1) evolutionary algorithm , 2002, Theor. Comput. Sci..

[9]  Alex A. Freitas,et al.  Evolutionary Computation , 2002 .

[10]  Per Kristian Lehre,et al.  Escaping Local Optima Using Crossover With Emergent Diversity , 2018, IEEE Transactions on Evolutionary Computation.

[11]  Duc-Cuong Dang,et al.  Escaping Local Optima with Diversity Mechanisms and Crossover , 2016, GECCO.

[12]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[13]  Andrew M. Sutton,et al.  On the runtime dynamics of the compact genetic algorithm on jump functions , 2018, GECCO.

[14]  Benjamin Doerr,et al.  Better Runtime Guarantees via Stochastic Domination , 2018, EvoCOP.

[15]  Benjamin Doerr,et al.  Tight Analysis of the (1+1)-EA for the Single Source Shortest Path Problem , 2011, Evolutionary Computation.

[16]  Dirk Sudholt,et al.  Medium step sizes are harmful for the compact genetic algorithm , 2018, GECCO.

[17]  David E. Goldberg,et al.  The compact genetic algorithm , 1999, IEEE Trans. Evol. Comput..

[18]  Benjamin Doerr,et al.  Precise Runtime Analysis for Plateaus , 2018, PPSN.

[19]  Benjamin Doerr,et al.  Significance-Based Estimation-of-Distribution Algorithms , 2018, IEEE Transactions on Evolutionary Computation.

[20]  Xin Yao,et al.  Drift analysis and average time complexity of evolutionary algorithms , 2001, Artif. Intell..

[21]  Johannes Lengler,et al.  Drift Analysis , 2017, Theory of Evolutionary Computation.

[22]  Ingo Wegener,et al.  Simulated Annealing Beats Metropolis in Combinatorial Optimization , 2005, ICALP.

[23]  Leandro Nunes de Castro,et al.  Natural Computing , 2005, Encyclopedia of Information Science and Technology.

[24]  Stefan Droste,et al.  A rigorous analysis of the compact genetic algorithm for linear functions , 2006, Natural Computing.

[25]  R. Fildes Journal of the American Statistical Association : William S. Cleveland, Marylyn E. McGill and Robert McGill, The shape parameter for a two variable graph 83 (1988) 289-300 , 1989 .

[26]  Pietro Simone Oliveto,et al.  On the runtime analysis of the opt-IA artificial immune system , 2017, GECCO.

[27]  Benjamin Doerr,et al.  Fast genetic algorithms , 2017, GECCO.

[28]  SIGEVO Staff GECCO 2018 , 2018, SEVO.

[29]  Benjamin Doerr,et al.  The Runtime of the Compact Genetic Algorithm on Jump Functions , 2019, Algorithmica.

[30]  Benjamin Doerr,et al.  Unbiased Black-Box Complexities of Jump Functions , 2014, Evolutionary Computation.

[31]  Benjamin Doerr,et al.  The unrestricted black-box complexity of jump functions , 2017, GECCO.