Origins and Evolution of Retrotransposons

This chapter summarizes the similarities and differences of retrotransposons, as well as the phylogenetic relationships of the various elements that have been characterized from each of the two classes of retrotransposons. It discusses what can be inferred about the ages and origins of retroelements and their relationship to other cellular components. In the most unusual group of long terminal repeat (LTR), retrotransposons, complete elements have unusual inverted or split terminal repeats and do not encode an integrase. One of the most interesting aspects of the evolution of the LTR retrotransposons is their close relationship to retroviruses, caulimoviruses, and hepadnaviruses. The simplicity of the target-primed reverse transcription (TPRT) mechanism for inserting new copies appears to permit considerable structural flexibility in the evolution of different non-LTR retrotransposons. The authors suggest that it is more likely that the LTR retrotransposons evolved from the same lineages of eubacterial sequences as all other retroelements. They have attempted in this chapter to provide an overview of the diversity and mode of evolution of eukaryotic retrotransposable elements and to trace their origins back to prokaryotic sequences.

[1]  S. Waddell,et al.  Ty1-copia group retrotransposon sequences in amphibia and reptilia , 1995, Molecular and General Genetics MGG.

[2]  T. Eickbush,et al.  Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. , 2001, Genome research.

[3]  Jef D. Boeke,et al.  Human L1 Retrotransposition: cisPreference versus trans Complementation , 2001, Molecular and Cellular Biology.

[4]  H. Fujiwara,et al.  Sequence-Specific Recognition and Cleavage of Telomeric Repeat (TTAGG)n by Endonuclease of Non-Long Terminal Repeat Retrotransposon TRAS1 , 2001, Molecular and Cellular Biology.

[5]  S. Henikoff,et al.  Poised for contagion: evolutionary origins of the infectious abilities of invertebrate retroviruses. , 2000, Genome research.

[6]  R. Frutos,et al.  Evolution of gypsy Endogenous Retrovirus in the Drosophila obscura Species Group , 2000 .

[7]  W. Reznikoff,et al.  Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. , 2000, Science.

[8]  C. Lloréns,et al.  Ty3/Gypsy retrotransposons: description of new Arabidopsis thaliana elements and evolutionary perspectives derived from comparative genomic data. , 2000, Molecular biology and evolution.

[9]  Marie-Christine Chaboissier,et al.  Retrotransposition of the I factor, a non-long terminal repeat retrotransposon of Drosophila, generates tandem repeats at the 3' end , 2000, Nucleic Acids Res..

[10]  B. Lockhart,et al.  Characterization and genomic analysis of tobacco vein clearing virus, a plant pararetrovirus that is transmitted vertically and related to sequences integrated in the host genome. , 2000, The Journal of general virology.

[11]  C. Ferraz,et al.  Evolution of the Gypsy endogenous retrovirus in the Drosophila melanogaster subgroup. , 2000, Molecular biology and evolution.

[12]  M. Belfort,et al.  Retrotransposition of a bacterial group II intron , 2000, Nature.

[13]  D. Voytas,et al.  Retroviruses in plants? , 2000, Trends in genetics : TIG.

[14]  Thierry Heidmann,et al.  Human LINE retrotransposons generate processed pseudogenes , 2000, Nature Genetics.

[15]  S. Christensen,et al.  Target Specificity of the Endonuclease from theXenopus laevis Non-Long Terminal Repeat Retrotransposon, Tx1L , 2000, Molecular and Cellular Biology.

[16]  A. Lewin,et al.  Systematic screening of Anopheles mosquito genomes yields evidence for a major clade of Pao‐like retrotransposons , 2000, Insect molecular biology.

[17]  T. Eickbush,et al.  NeSL-1, an ancient lineage of site-specific non-LTR retrotransposons from Caenorhabditis elegans. , 2000, Genetics.

[18]  A. Smit Interspersed repeats and other mementos of transposable elements in mammalian genomes. , 1999, Current opinion in genetics & development.

[19]  L. Eichinger,et al.  Non-LTR retrotransposons with unique integration preferences downstream of Dictyostelium discoideum tRNA genes , 1999, Molecular and General Genetics MGG.

[20]  I. K. Jordan,et al.  Evidence for the recent horizontal transfer of long terminal repeat retrotransposon. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[21]  N. Bowen,et al.  Genomic analysis of Caenorhabditis elegans reveals ancient families of retroviral-like elements. , 1999, Genome research.

[22]  P. Capy,et al.  Retrotransposons and retroviruses: analysis of the envelope gene. , 1999, Molecular biology and evolution.

[23]  A. Lambowitz,et al.  A reverse transcriptase/maturase promotes splicing by binding at its own coding segment in a group II intron RNA. , 1999, Molecular cell.

[24]  T. Eickbush,et al.  Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[25]  H. Lessios,et al.  Evolution of sea urchin retroviral-like (SURL) elements: evidence from 40 echinoid species. , 1999, Molecular biology and evolution.

[26]  M. Labrador,et al.  The retrotransposon Osvaldo from Drosophila buzzatii displays all structural features of a functional retrovirus. , 1999, Molecular biology and evolution.

[27]  Doolittle Wf Phylogenetic Classification and the Universal Tree , 1999 .

[28]  T. Eickbush,et al.  The age and evolution of non-LTR retrotransposable elements. , 1999, Molecular biology and evolution.

[29]  T. Eickbush,et al.  Modular Evolution of the Integrase Domain in the Ty3/Gypsy Class of LTR Retrotransposons , 1999, Journal of Virology.

[30]  T. Eickbush,et al.  The domain structure and retrotransposition mechanism of R2 elements are conserved throughout arthropods. , 1999, Molecular biology and evolution.

[31]  A. Bucheton,et al.  High-frequency retrotransposition of a marked I factor in Drosophila melanogaster correlates with a dynamic expression pattern of the ORF1 protein in the cytoplasm of oocytes. , 1999, Genetics.

[32]  C. Funk,et al.  Sequence and analysis of the genome of a baculovirus pathogenic for Lymantria dispar. , 1999, Virology.

[33]  B. Dastugue,et al.  Mobilization of two retroelements, ZAM and Idefix, in a novel unstable line of Drosophila melanogaster. , 1999, Molecular biology and evolution.

[34]  G. Mohr,et al.  Group II intron mobility in yeast mitochondria: target DNA-primed reverse transcription activity of aI1 and reverse splicing into DNA transposition sites in vitro. , 1998, Journal of molecular biology.

[35]  A. Furano,et al.  Determining and dating recent rodent speciation events by using L1 (LINE-1) retrotransposons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[36]  T. Eickbush,et al.  The RTE class of non-LTR retrotransposons is widely distributed in animals and is the origin of many SINEs. , 1998, Molecular biology and evolution.

[37]  Phillip SanMiguel,et al.  The paleontology of intergene retrotransposons of maize , 1998, Nature Genetics.

[38]  D. Kordis,et al.  Unusual horizontal transfer of a long interspersed nuclear element between distant vertebrate classes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M. Belfort,et al.  Retrohoming of a Bacterial Group II Intron Mobility via Complete Reverse Splicing, Independent of Homologous DNA Recombination , 1998, Cell.

[40]  S. Devine,et al.  Yeast Retrotransposons: Finding a Nice Quiet Neighborhood , 1998, Cell.

[41]  E. Gaucher,et al.  SIRE-1, a copia/Ty1-like retroelement from soybean, encodes a retroviral envelope-like protein. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[42]  T. Blumenthal Gene clusters and polycistronic transcription in eukaryotes , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[43]  D. Voytas,et al.  Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins. , 1998, Genetics.

[44]  T. Eickbush,et al.  RNA-Induced Changes in the Activity of the Endonuclease Encoded by the R2 Retrotransposable Element , 1998, Molecular and Cellular Biology.

[45]  D. Voytas,et al.  Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. , 1998, Genome research.

[46]  W. Lathe,et al.  Are retrotransposons long-term hitchhikers? , 1998, Nature.

[47]  T. Cech,et al.  Reversing Time: Origin of Telomerase , 1998, Cell.

[48]  J. Boeke,et al.  Retrotransposon R1Bm endonuclease cleaves the target sequence. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[49]  N. Okada,et al.  SINEs and LINEs share common 3' sequences: a review. , 1997, Gene.

[50]  W. Lathe,et al.  A single lineage of r2 retrotransposable elements is an active, evolutionarily stable component of the Drosophila rDNA locus. , 1997, Molecular biology and evolution.

[51]  N. Okada,et al.  Determination of the entire sequence of turtle CR1: the first open reading frame of the turtle CR1 element encodes a protein with a novel zinc finger motif. , 1997, Molecular biology and evolution.

[52]  K. Richert-Pöggeler,et al.  Petunia vein-clearing virus: a plant pararetrovirus with the core sequences for an integrase function. , 1997, Virology.

[53]  C B Harley,et al.  Telomerase catalytic subunit homologs from fission yeast and human. , 1997, Science.

[54]  T. Eickbush Telomerase and Retrotransposons: Which Came First? , 1997, Science.

[55]  J. Hansen,et al.  Structure of the RNA-dependent RNA polymerase of poliovirus. , 1997, Structure.

[56]  P. Brindley,et al.  A retrotransposon of the non-long terminal repeat class from the human blood fluke Schistosoma mansoni. Similarities to the chicken-repeat-1-like elements of vertebrates. , 1997, Molecular biology and evolution.

[57]  H. Fujiwara,et al.  A new family of site-specific retrotransposons, SART1, is inserted into telomeric repeats of the silkworm, Bombyx mori. , 1997, Nucleic acids research.

[58]  A. Lambowitz,et al.  Mobility of Yeast Mitochondrial Group II Introns: Engineering a New Site Specificity and Retrohoming via Full Reverse Splicing , 1997, Cell.

[59]  J. Stoye,et al.  Retrotransposons, Endogenous Retroviruses, and the Evolution of Retroelements , 1997 .

[60]  D. Hartl,et al.  Modern thoughts on an ancyent marinere: function, evolution, regulation. , 1997, Annual review of genetics.

[61]  Claude Bazin,et al.  Dynamics and evolution of trans-posable elements , 1996 .

[62]  A. Smit,et al.  The origin of interspersed repeats in the human genome. , 1996, Current opinion in genetics & development.

[63]  Jef D Boeke,et al.  High Frequency Retrotransposition in Cultured Mammalian Cells , 1996, Cell.

[64]  Jef D Boeke,et al.  Human L1 Retrotransposon Encodes a Conserved Endonuclease Required for Retrotransposition , 1996, Cell.

[65]  D. Petrov,et al.  High intrinsic rate of DNA loss in Drosophila , 1996, Nature.

[66]  T. Eickbush,et al.  Downstream 28S gene sequences on the RNA template affect the choice of primer and the accuracy of initiation by the R2 reverse transcriptase , 1996, Molecular and cellular biology.

[67]  W. Britt,et al.  Human cytomegalovirus glycoproteins. , 1996, Intervirology.

[68]  A. Lambowitz,et al.  A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility , 1995, Cell.

[69]  W. Lathe,et al.  Evolutionary stability of the R1 retrotransposable element in the genus Drosophila. , 1995, Molecular biology and evolution.

[70]  N. Craig Unity in Transposition Reactions , 1995, Science.

[71]  P. Perlman,et al.  Group II intron mobility occurs by target DNA-primed reverse transcription , 1995, Cell.

[72]  H. Fujiwara,et al.  Structural analysis of TRAS1, a novel family of telomeric repeat-associated retrotransposons in the silkworm, Bombyx mori , 1995, Molecular and cellular biology.

[73]  T. Eickbush,et al.  RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element , 1995, Molecular and cellular biology.

[74]  C. Alonso,et al.  Characterization of a non-long terminal repeat retrotransposon cDNA (L1Tc) from Trypanosoma cruzi: homology of the first ORF with the ape family of DNA repair enzymes. , 1995, Journal of molecular biology.

[75]  R. Britten,et al.  Phylogeny, rates of evolution, and patterns of codon usage among sea urchin retroviral-like elements, with implications for the recognition of horizontal transfer. , 1995, Molecular biology and evolution.

[76]  S. Martin,et al.  Tightly regulated, developmentally specific expression of the first open reading frame from LINE-1 during mouse embryogenesis. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[77]  T. Eickbush,et al.  Vertical transmission of the retrotransposable elements R1 and R2 during the evolution of the Drosophila melanogaster species subgroup. , 1995, Genetics.

[78]  J. Szemraj,et al.  Bovine Alu-like sequences mediate transposition of a new site-specific retroelement. , 1995, Gene.

[79]  R. Britten,et al.  Active gypsy/Ty3 retrotransposons or retroviruses in Caenorhabditis elegans. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[80]  F. Michel,et al.  Structure and activities of group II introns. , 1995, Annual review of biochemistry.

[81]  R. Levis,et al.  Transposition of the LINE-like retrotransposon TART to Drosophila chromosome termini. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[82]  F. Müller,et al.  Tas, a retrotransposon from the parasitic nematode Ascaris lumbricoides. , 1994, Gene.

[83]  S. Eddy,et al.  Amino acid sequence motif of group I intron endonucleases is conserved in open reading frames of group II introns. , 1994, Trends in biochemical sciences.

[84]  J. Boeke,et al.  An env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. , 1994, Genes & development.

[85]  A. Engelman,et al.  The core and carboxyl-terminal domains of the integrase protein of human immunodeficiency virus type 1 each contribute to nonspecific DNA binding , 1994, Journal of virology.

[86]  A. Gorbalenya Self‐splicing group I and group II introns encode homologous (putative) DNA endonucleases of a new family , 1994, Protein science : a publication of the Protein Society.

[87]  M. P. Cummings Transmission patterns of eukaryotic transposable elements: arguments for and against horizontal transfer. , 1994, Trends in ecology & evolution.

[88]  T. Doak,et al.  A proposed superfamily of transposase genes: transposon-like elements in ciliated protozoa and a common "D35E" motif. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[89]  A. Lambowitz,et al.  The mauriceville plasmid reverse transcriptase can initiate cDNA synthesis de novo and may be related to reverse transcriptase and DNA polymerase progenitor , 1993, Cell.

[90]  S. Inouye,et al.  The retron: a bacterial retroelement required for the synthesis of msDNA. , 1993, Current opinion in genetics & development.

[91]  T. Eickbush,et al.  Pao, a highly divergent retrotransposable element from Bombyx mori containing long terminal repeats with tandem copies of the putative R region. , 1993, Nucleic acids research.

[92]  Hugh M. Robertson,et al.  The mariner transposable element is widespread in insects , 1993, Nature.

[93]  T. Eickbush,et al.  Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition , 1993, Cell.

[94]  Wen-Hsiung Li,et al.  So, what about the molecular clock hypothesis? , 1993, Current opinion in genetics & development.

[95]  C. Seeger,et al.  The reverse transcriptase of hepatitis B virus acts as a protein primer for viral DNA synthesis , 1992, Cell.

[96]  T. Steitz,et al.  Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. , 1992, Science.

[97]  A. Skalka,et al.  Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases , 1992, Molecular and cellular biology.

[98]  T. Eickbush Transposing without ends: the non-LTR retrotransposable elements. , 1992, The New biologist.

[99]  F. Müller,et al.  Unusual features of the retroid element PAT from the nematode Panagrellus redivivus. , 1992, Nucleic acids research.

[100]  K. Mizuuchi,et al.  Transpositional recombination: mechanistic insights from studies of mu and other elements. , 1992, Annual review of biochemistry.

[101]  John M. Logsdon,et al.  The recent origins of introns. , 1991 .

[102]  E. Koonin,et al.  Diverse groups of plant RNA and DNA viruses share related movement proteins that may possess chaperone-like activity. , 1991, The Journal of general virology.

[103]  M. A. McClure Evolution of retroposons by acquisition or deletion of retrovirus-like genes. , 1991, Molecular biology and evolution.

[104]  R. Chan,et al.  Short leader sequences may be transferred from small RNAs to pre‐mature mRNAs by trans‐splicing in Euglena. , 1991, The EMBO journal.

[105]  T. Heidmann,et al.  An indicator gene for detection of germline retrotransposition in transgenic Drosophila demonstrates RNA‐mediated transposition of the LINE I element. , 1991, The EMBO journal.

[106]  T. Cavalier-smith,et al.  Intron phylogeny: a new hypothesis. , 1991, Trends in genetics : TIG.

[107]  A. Skalka,et al.  Retroviral integrase domains: DNA binding and the recognition of LTR sequences. , 1991, Nucleic acids research.

[108]  G. Swergold Identification, characterization, and cell specificity of a human LINE-1 promoter , 1990, Molecular and cellular biology.

[109]  A. Mazo,et al.  Evidence for horizontal transmission of the mobile element jockey between distant Drosophila species. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[110]  O. Fayet,et al.  Functional similarities between retroviruses and the IS3 family of bacterial insertion sequences? , 1990, Molecular microbiology.

[111]  T. Eickbush,et al.  Origin and evolution of retroelements based upon their reverse transcriptase sequences. , 1990, The EMBO journal.

[112]  M. Nissen,et al.  Gene organization and transcription of TED, a lepidopteran retrotransposon integrated within the baculovirus genome , 1990, Molecular and cellular biology.

[113]  N. Besansky A Retrotransposable Element from the Mosquito Anopheles gambiae , 1990, Molecular and cellular biology.

[114]  S. Aksoy,et al.  SLACS retrotransposon from Trypanosoma brucei gambiense is similar to mammalian LINEs. , 1990, Nucleic acids research.

[115]  D. Schwartz,et al.  A rapidly rearranging retrotransposon within the miniexon gene locus of Crithidia fasciculata. , 1990, Molecular and cellular biology.

[116]  A. Bucheton I transposable elements and I-R hybrid dysgenesis in Drosophila. , 1990, Trends in genetics : TIG.

[117]  D. Carroll,et al.  Composite transposable elements in the Xenopus laevis genome. , 1989, Molecular and cellular biology.

[118]  H. Temin Retrons in bacteria , 1989, Nature.

[119]  M. A. McClure,et al.  Origins and Evolutionary Relationships of Retroviruses , 1989, The Quarterly Review of Biology.

[120]  J. Boeke,et al.  Transcription and reverse transcription of retrotransposons. , 1989, Annual review of microbiology.

[121]  B. Charlesworth,et al.  The population genetics of Drosophila transposable elements. , 1989, Annual review of genetics.

[122]  D. Chalker,et al.  Ty3, a yeast retrotransposon associated with tRNA genes, has homology to animal retroviruses , 1988, Molecular and cellular biology.

[123]  D. Voytas,et al.  A copia-like transposable element family in Arabidopsis thaliana , 1988, Nature.

[124]  T. Eickbush,et al.  Similarity of reverse transcriptase-like sequences of viruses, transposable elements, and mitochondrial introns. , 1988, Molecular biology and evolution.

[125]  Y. Ilyin,et al.  jockey, a mobile drosophila element similar to mammalian LINEs, is transcribed from the internal promoter by RNA polymerase II , 1988, Cell.

[126]  H. Saedler,et al.  Cin4, an insert altering the structure of the A1 gene in Zea mays, exhibits properties of nonviral retrotransposons , 1987, The EMBO journal.

[127]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[128]  T. Eickbush,et al.  The site-specific ribosomal insertion element type II of Bombyx mori (R2Bm) contains the coding sequence for a reverse transcriptase-like enzyme , 1987, Molecular and cellular biology.

[129]  H. Varmus,et al.  The molecular biology of the hepatitis B viruses. , 1987, Annual review of biochemistry.

[130]  C. Lister,et al.  Transposable elements controlling I-R hybrid dysgenesis in D. melanogaster are similar to mammalian LINEs , 1986, Cell.

[131]  M. Hattori,et al.  L1 family of repetitive DNA sequences in primates may be derived from a sequence encoding a reverse transcriptase-related protein , 1986, Nature.

[132]  S. Parkhurst,et al.  The Drosophila melanogaster gypsy transposable element encodes putative gene products homologous to retroviral proteins. , 1986, Molecular and cellular biology.

[133]  C. Hutchison,et al.  An analysis of replacement and synonymous changes in the rodent L1 repeat family. , 1986, Molecular biology and evolution.

[134]  C. Hutchison,et al.  The sequence of a large L1Md element reveals a tandemly repeated 5' end and several features found in retrotransposons , 1986, Molecular and cellular biology.

[135]  A. Weiner,et al.  Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. , 1986, Annual review of biochemistry.

[136]  H. Lodish,et al.  Sequence of Dictyostelium DIRS-1: An apparent retrotransposon with inverted terminal repeats and an internal circle junction sequence , 1985, Cell.

[137]  G. Fink,et al.  Ty element transposition: Reverse transcriptase and virus-like particles , 1985, Cell.

[138]  Stephen M. Mount,et al.  Complete nucleotide sequence of the Drosophila transposable element copia: homology between copia and retroviral proteins , 1985, Molecular and cellular biology.

[139]  J. Skowroński,et al.  Making sense out of LINES: long interspersed repeat sequences in mammalian genomes , 1985 .

[140]  G. Fink,et al.  Ty elements transpose through an RNA intermediate , 1985, Cell.

[141]  J. Rogers,et al.  The origin and evolution of retroposons. , 1985, International review of cytology.

[142]  C. Hutchison,et al.  Dispersal process associated with the L1 family of interspersed repetitive DNA sequences. , 1984, Journal of molecular biology.

[143]  T. Hohn,et al.  Involvement of reverse transcription in the replication of cauliflower mosaic virus: A detailed model and test of some aspects , 1983, Cell.

[144]  K. Saigo,et al.  Retrovirus-like particles containing RNA homologous to the transposable element copia in Drosophila melanogaster , 1983, Nature.

[145]  H. Hanafusa,et al.  Comparison between the viral transforming gene (src) of recovered avian sarcoma virus and its cellular homolog , 1981, Molecular and cellular biology.