ADAN: a database for prediction of protein-protein interaction of modular domains mediated by linear motifs

MOTIVATION Most of the structures and functions of proteome globular domains are yet unknown. We can use high-resolution structures from different modular domains in combination with automatic protein design algorithms to predict genome-wide potential interactions of a protein. ADAN database and related web tools are online resources for the predictive analysis of ligand-domain complexes. ADAN database is a collection of different modular protein domains (SH2, SH3, PDZ, WW, etc.). It contains 3505 entries with extensive structural and functional information available, manually integrated, curated and annotated with cross-references to other databases, biochemical and thermodynamical data, simplified coordinate files, sequence files and alignments. Prediadan, a subset of ADAN database, offers position-specific scoring matrices for protein-protein interactions, calculated by FoldX, and predictions of optimum ligands and putative binding partners. Users can also scan a query sequence against selected matrices, or improve a ligand-domain interaction. AVAILABILITY ADAN is accessible at http://adan-embl.ibmc.umh.es/ or http://adan.crg.es/.

[1]  Robert D. Finn,et al.  Pfam: clans, web tools and services , 2005, Nucleic Acids Res..

[2]  Haruki Nakamura,et al.  Announcing the worldwide Protein Data Bank , 2003, Nature Structural Biology.

[3]  Deok-Soo Kim,et al.  A protein domain interaction interface database: InterPare , 2005, BMC Bioinformatics.

[4]  J M Thornton,et al.  LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. , 1995, Protein engineering.

[5]  Joost Schymkowitz,et al.  Recognizing and defining true Ras binding domains II: in silico prediction based on homology modelling and energy calculations. , 2005, Journal of molecular biology.

[6]  J M Thornton,et al.  Sequences annotated by structure: a tool to facilitate the use of structural information in sequence analysis. , 1998, Protein engineering.

[7]  Carlos Prieto,et al.  APID: Agile Protein Interaction DataAnalyzer , 2006, Nucleic Acids Res..

[8]  A Bairoch,et al.  SWISS-PROT: connecting biomolecular knowledge via a protein database. , 2001, Current issues in molecular biology.

[9]  Enrique Querol,et al.  Ligand screening by exoproteolysis and mass spectrometry in combination with computer modelling. , 2003, Journal of molecular biology.

[10]  Robert D. Finn,et al.  iPfam: visualization of protein?Cprotein interactions in PDB at domain and amino acid resolutions , 2005, Bioinform..

[11]  Kyungsook Han,et al.  PSIbase: a database of Protein Structural Interactome map (PSIMAP) , 2005, Bioinform..

[12]  Alex Bateman,et al.  The InterPro database, an integrated documentation resource for protein families, domains and functional sites , 2001, Nucleic Acids Res..

[13]  Marc A. Martí-Renom,et al.  MODBASE: a database of annotated comparative protein structure models and associated resources , 2005, Nucleic Acids Res..

[14]  Andrew Chatr-aryamontri,et al.  DOMINO: a database of domain–peptide interactions , 2006, Nucleic Acids Res..

[15]  P. Bork,et al.  Proteome survey reveals modularity of the yeast cell machinery , 2006, Nature.

[16]  Ozlem Keskin,et al.  PRISM: protein interactions by structural matching , 2005, Nucleic Acids Res..

[17]  J Schultz,et al.  SMART, a simple modular architecture research tool: identification of signaling domains. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Christina Kiel,et al.  The ubiquitin domain superfold: structure-based sequence alignments and characterization of binding epitopes. , 2006, Journal of molecular biology.

[19]  Alfonso Valencia,et al.  Structure-based prediction of the Saccharomyces cerevisiae SH3-ligand interactions. , 2009, Journal of molecular biology.

[20]  Cathy H. Wu,et al.  InterPro, progress and status in 2005 , 2004, Nucleic Acids Res..

[21]  François Stricher,et al.  The FoldX web server: an online force field , 2005, Nucleic Acids Res..

[22]  Gregorio Fernandez-Ballester,et al.  The tryptophan switch: changing ligand-binding specificity from type I to type II in SH3 domains. , 2004, Journal of molecular biology.

[23]  Bin Tian,et al.  A large-scale analysis of mRNA polyadenylation of human and mouse genes , 2005, Nucleic acids research.

[24]  Maria Leptin,et al.  Control of Drosophila Gastrulation by Apical Localization of Adherens Junctions and RhoGEF2 , 2007, Science.

[25]  Patrick Aloy,et al.  Interrogating protein interaction networks through structural biology , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Peer Bork,et al.  SMART 5: domains in the context of genomes and networks , 2005, Nucleic Acids Res..

[27]  Janet M. Thornton,et al.  PDBsum more: new summaries and analyses of the known 3D structures of proteins and nucleic acids , 2004, Nucleic Acids Res..

[28]  Zhilei Chen,et al.  A highly sensitive selection method for directed evolution of homing endonucleases , 2005, Nucleic acids research.

[29]  Gregorio Fernandez-Ballester,et al.  Computer modelling in combination with in vitro studies reveals similar binding affinities of Drosophila Crumbs for the PDZ domains of Stardust and DmPar-6. , 2006, European journal of cell biology.

[30]  Peer Bork,et al.  SMART: identification and annotation of domains from signalling and extracellular protein sequences , 1999, Nucleic Acids Res..

[31]  Cathy H. Wu,et al.  The Universal Protein Resource (UniProt) , 2006, Nucleic Acids Research.

[32]  Maria Victoria Schneider,et al.  MINT: a Molecular INTeraction database. , 2002, FEBS letters.

[33]  Luis Serrano,et al.  Prediction of protein-protein interaction based on structure. , 2006, Methods in molecular biology.

[34]  Christina Kiel,et al.  A detailed thermodynamic analysis of ras/effector complex interfaces. , 2004, Journal of molecular biology.

[35]  L. Serrano,et al.  Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. , 2002, Journal of molecular biology.

[36]  Ignacio E. Sánchez,et al.  Genome-Wide Prediction of SH2 Domain Targets Using Structural Information and the FoldX Algorithm , 2008, PLoS Comput. Biol..

[37]  Robert B. Russell,et al.  GlobPlot: exploring protein sequences for globularity and disorder , 2003, Nucleic Acids Res..

[38]  A. Sali,et al.  Comparative protein structure modeling of genes and genomes. , 2000, Annual review of biophysics and biomolecular structure.

[39]  Sameer Velankar,et al.  E-MSD: improving data deposition and structure quality , 2005, Nucleic Acids Res..