Improvements of COSMO-SAC for vapor–liquid and liquid–liquid equilibrium predictions

Abstract The COSMO-SAC model has been revised for a better description of the nonideality of liquid mixtures, and thus more accurate predictions of both vapor–liquid equilibrium (VLE) and liquid–liquid equilibrium (LLE). Two major modifications are introduced. First, the electrostatic interaction parameter is made temperature-dependent, which is important in LLE predictions for non-hydrogen-bonding systems. Second, the variation in the strength of hydrogen-bonding interactions involving different types of functional groups is treated using separate sigma-profiles. The overall RMS error in LLE predictions of 278 binary mixtures (4281 data points) from the new model is 0.1047, which is 30% lower than that from the original COSMO-SAC (0.1446), 10% lower from that of UNIFAC-LLE (0.1161), and comparable to that from the modified UNIFAC model (0.1048). The accuracy in VLE predictions is also improved. The average deviation in total pressure at a fixed liquid composition is 6.54% and the overall average deviation in vapor phase composition is 2.57% for 1338 binary mixtures, compared to 7.25% and 2.83% from the original model.

[1]  L. Manna,et al.  QSPR prediction of N-boiling point and critical properties of organic compounds and comparison with a group-contribution method , 2008 .

[2]  W. Arlt,et al.  Liquid-liquid equilibrium data collection , 1979 .

[3]  Jiding Li,et al.  A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties , 1993 .

[4]  S. S. Rath,et al.  Multicomponent Liquid−Liquid Equilibria Prediction for Aromatic Extraction Systems Using COSMO-RS , 2007 .

[5]  J. S. Rowlinson,et al.  Molecular Thermodynamics of Fluid-Phase Equilibria , 1969 .

[6]  J. Gmehling,et al.  Prediction of liquid heat capacities by the group contribution equation of state VTPR , 2006 .

[7]  J. Gmehling Vapor-Liquid Equilibrium Data Collection , 1977 .

[8]  S. Sandler,et al.  Henry's law constant of organic compounds in water from a group contribution model with multipole corrections , 2002 .

[9]  J. Gmehling,et al.  PSRK: A Group Contribution Equation of State Based on UNIFAC , 1991 .

[10]  Aage Fredenslund,et al.  UNIFAC parameter table for prediction of liquid-liquid equilibriums , 1981 .

[11]  Andreas Klamt,et al.  COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics , 2005 .

[12]  Y. A. Liu,et al.  Sigma Profile Database for Predicting Solid Solubility in Pure and Mixed Solvent Mixtures for Organic Pharmacological Compounds with COSMO-Based Thermodynamic Methods , 2008 .

[13]  R. Gani,et al.  New group contribution method for estimating properties of pure compounds , 1994 .

[14]  J. Gmehling,et al.  A modified UNIFAC model. 1. Prediction of VLE, hE, and .gamma..infin. , 1987 .

[15]  S. Sandler,et al.  Infinite dilution activity coefficients from ab initio solvation calculations , 1999 .

[16]  Aage Fredenslund,et al.  Computerized Design of Multicomponent Distillation Columns Using the UNIFAC Group Contribution Method for Calculation of Activity Coefficients , 1977 .

[17]  R. L. Robinson,et al.  SVRC–QSPR model for predicting saturated vapor pressures of pure fluids , 2006 .

[18]  Y. A. Liu,et al.  Sigma-Profile Database for Using COSMO-Based Thermodynamic Methods , 2006 .

[19]  J. Gmehling,et al.  Performance of COSMO-RS with Sigma Profiles from Different Model Chemistries , 2007 .

[20]  Tiancheng Mu,et al.  Group contribution prediction of surface charge density profiles for COSMO‐RS(Ol) , 2007 .

[21]  S. Sandler Chemical and engineering thermodynamics , 1977 .

[22]  Chieh-Ming Hsieh,et al.  Prediction of liquid–liquid equilibrium from the Peng–Robinson+COSMOSAC equation of state , 2010 .

[23]  Ashish Dwivedi,et al.  Potential applications of artificial neural networks to thermodynamics: vapor–liquid equilibrium predictions , 1999 .

[24]  Jorge A. Marrero,et al.  Group-contribution based estimation of pure component properties , 2001 .

[25]  Roger Hayward,et al.  The Hydrogen Bond , 1960 .

[26]  Stanley I. Sandler,et al.  Refinement of COSMO−SAC and the Applications , 2007 .

[27]  A. Klamt,et al.  Refinement and Parametrization of COSMO-RS , 1998 .

[28]  A. Klamt,et al.  COSMO : a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient , 1993 .

[29]  Design of a Combined Mixing Rule for the Prediction of Vapor−Liquid Equilibria Using Neural Networks , 1999 .

[30]  S. Sandler,et al.  Prediction of Octanol−Water Partition Coefficients Using a Group Contribution Solvation Model , 1999 .

[31]  W. Goddard,et al.  Application of the COSMO−SAC−BP Solvation Model to Predictions of Normal Boiling Temperatures for Environmentally Significant Substances , 2006 .

[32]  John M. Stubbs,et al.  Effects of conformational distributions on sigma profiles in COSMO theories. , 2005, The journal of physical chemistry. A.

[33]  R. Danner,et al.  Prediction of liquid-liquid equilibria with UNIFAC: a critical evaluation , 1987 .

[34]  Aage Fredenslund,et al.  Vapor−Liquid Equilibria by UNIFAC Group Contribution. 6. Revision and Extension , 1979 .

[35]  William A. Goddard,et al.  Prediction of Vapor Pressures and Enthalpies of Vaporization Using a COSMO Solvation Model , 2004 .

[36]  Rafiqul Gani,et al.  Estimation of the acentric factor and the liquid molar volume at 298 K using a new group contribution method , 1995 .

[37]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[38]  Study of EOS‐Gex mixing rules for liquid–liquid equilibria , 1998 .

[39]  Márcia M. C. Ferreira,et al.  QSPR models of boiling point, octanol–water partition coefficient and retention time index of polycyclic aromatic hydrocarbons , 2003 .

[40]  Svetoslav H. Slavov,et al.  Rapid QSPR model development technique for prediction of vapor pressure of organic compounds , 2007, Comput. Chem. Eng..

[41]  Stanley I. Sandler,et al.  A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Model , 2002 .

[42]  Jürgen Gmehling,et al.  A Modified UNIFAC (Dortmund) Model. 3. Revision and Extension , 1998 .

[43]  R. L. Robinson,et al.  QSPR generalization of activity coefficient models for predicting vapor–liquid equilibrium behavior , 2007 .

[44]  Jürgen Gmehling,et al.  Performance of a Conductor-Like Screening Model for Real Solvents Model in Comparison to Classical Group Contribution Methods , 2005 .

[45]  S. Sandler,et al.  Multipole Corrections To Account for Structure and Proximity Effects in Group Contribution Methods: Octanol−Water Partition Coefficients , 2000 .

[46]  Cheng-Ching Yu,et al.  Plant-wide design and control of DMC synthesis process via reactive distillation and thermally coupled extractive distillation , 2010, Comput. Chem. Eng..

[47]  A. Klamt Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena , 1995 .

[48]  Suojiang Zhang,et al.  Prediction of infinite dilution activity coefficients in aqueous solutions by group contribution models. A critical evaluation , 1998 .