Autophagy links inflammasomes to atherosclerotic progression.

[1]  Robert Clarke,et al.  Guidelines for the use and interpretation of assays for monitoring autophagy , 2012 .

[2]  V. Deretic,et al.  Autophagy‐based unconventional secretory pathway for extracellular delivery of IL‐1β , 2011, The EMBO journal.

[3]  J. Tschopp,et al.  The inflammasome: an integrated view , 2011, Immunological reviews.

[4]  G. Dorn,et al.  Fatty Acid Synthase Modulates Homeostatic Responses to Myocardial Stress* , 2011, The Journal of Biological Chemistry.

[5]  M. Behlke,et al.  Small nucleolar RNAs U32a, U33, and U35a are critical mediators of metabolic stress. , 2011, Cell metabolism.

[6]  Y. Marcel,et al.  Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. , 2011, Cell metabolism.

[7]  Seth L Masters,et al.  The Inflammasome in Atherosclerosis and Type 2 Diabetes , 2011, Science Translational Medicine.

[8]  Denis Gris,et al.  Fatty acid–induced NLRP3-ASC inflammasome activation interferes with insulin signaling , 2011, Nature Immunology.

[9]  G. Bhanot,et al.  Autophagy Suppresses Tumorigenesis through Elimination of p62 , 2011, Cell.

[10]  Haitao Wen,et al.  The inflammasome NLRs in immunity, inflammation, and associated diseases. , 2011, Annual review of immunology.

[11]  V. Dixit,et al.  Mitochondrial reactive oxygen species drive proinflammatory cytokine production , 2011, The Journal of experimental medicine.

[12]  S. Ryter,et al.  Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. , 2011, Nature immunology.

[13]  H. Virgin,et al.  Autophagy in immunity and inflammation , 2011, Nature.

[14]  Egil Lien,et al.  NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals , 2010, Nature.

[15]  P. Kovanen,et al.  Cholesterol Crystals Activate the NLRP3 Inflammasome in Human Macrophages: A Novel Link between Cholesterol Metabolism and Inflammation , 2010, PloS one.

[16]  J. Schneider,et al.  Macrophage Fatty-acid Synthase Deficiency Decreases Diet-induced Atherosclerosis* , 2010, The Journal of Biological Chemistry.

[17]  Kate Schroder,et al.  The NLRP3 Inflammasome: A Sensor for Metabolic Danger? , 2010, Science.

[18]  Randall C. Thompson,et al.  Computed tomographic assessment of atherosclerosis in ancient Egyptian mummies. , 2009, JAMA.

[19]  D. Praticò,et al.  Low‐dose oral sirolimus reduces atherogenesis, vascular inflammation and modulates plaque composition in mice lacking the LDL receptor , 2009, British journal of pharmacology.

[20]  M. Huang,et al.  Critical Role of Apoptotic Speck Protein Containing a Caspase Recruitment Domain (ASC) and NLRP3 in Causing Necrosis and ASC Speck Formation Induced by Porphyromonas gingivalis in Human Cells1 , 2009, The Journal of Immunology.

[21]  J. Satsangi Faculty Opinions recommendation of Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. , 2008 .

[22]  K. Rock,et al.  Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization , 2008, Nature Immunology.

[23]  D. Teupser,et al.  Prevention of atherosclerosis by the mTOR inhibitor everolimus in LDLR-/- mice despite severe hypercholesterolemia. , 2008, Atherosclerosis.

[24]  John L Cleveland,et al.  Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes , 2008, Autophagy.

[25]  C. Thompson,et al.  Autophagy: basic principles and relevance to disease. , 2008, Annual review of pathology.

[26]  Guido Kroemer,et al.  Autophagy in the Pathogenesis of Disease , 2008, Cell.

[27]  Masaaki Komatsu,et al.  Homeostatic Levels of p62 Control Cytoplasmic Inclusion Body Formation in Autophagy-Deficient Mice , 2007, Cell.

[28]  C. Leeuwenburgh,et al.  Autophagy in the heart and liver during normal aging and calorie restriction. , 2007, Rejuvenation research.

[29]  Guido Kroemer,et al.  Self-eating and self-killing: crosstalk between autophagy and apoptosis , 2007, Nature Reviews Molecular Cell Biology.

[30]  J. Richardson,et al.  Cardiac autophagy is a maladaptive response to hemodynamic stress. , 2007, The Journal of clinical investigation.

[31]  P. Seglen,et al.  How Shall I Eat Thee? , 2007, Autophagy.

[32]  Yasushi Matsumura,et al.  The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress , 2007, Nature Medicine.

[33]  Hideyuki Okano,et al.  Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice , 2006, Nature.

[34]  Masaaki Komatsu,et al.  Loss of autophagy in the central nervous system causes neurodegeneration in mice , 2006, Nature.

[35]  W. Jerome,et al.  Advanced atherosclerotic foam cell formation has features of an acquired lysosomal storage disorder. , 2006, Rejuvenation research.

[36]  J. Bertin,et al.  Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. , 2006, Immunity.

[37]  G. Bjørkøy,et al.  p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death , 2005, The Journal of cell biology.

[38]  Jody C. Ullery,et al.  Aggregated LDL and lipid dispersions induce lysosomal cholesteryl ester accumulation in macrophage foam cells Published, JLR Papers in Press, July 16, 2005. DOI 10.1194/jlr.M500059-JLR200 , 2005, Journal of Lipid Research.

[39]  R. Pakala,et al.  Rapamycin Attenuates Atherosclerotic Plaque Progression in Apolipoprotein E Knockout Mice: Inhibitory Effect on Monocyte Chemotaxis , 2005, Journal of cardiovascular pharmacology.

[40]  Masaaki Komatsu,et al.  Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice , 2005, The Journal of cell biology.

[41]  J. Schneider,et al.  "New" hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. , 2005, Cell metabolism.

[42]  Takeshi Tokuhisa,et al.  The role of autophagy during the early neonatal starvation period , 2004, Nature.

[43]  D. Schrijvers,et al.  7-Ketocholesterol Induces Protein Ubiquitination, Myelin Figure Formation, and Light Chain 3 Processing in Vascular Smooth Muscle Cells , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[44]  V. Dixit,et al.  Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf , 2004, Nature.

[45]  Govind Bhagat,et al.  Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. , 2003, The Journal of clinical investigation.

[46]  Arnold J. Levine,et al.  Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Hong Yang,et al.  Dietary restriction reduces atherosclerosis and oxidative stress in the aorta of apolipoprotein E-deficient mice , 2002, Mechanisms of Ageing and Development.

[48]  G. Christ,et al.  Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. , 2001, The Journal of biological chemistry.

[49]  P. Yancey,et al.  Lysosomal cholesterol derived from mildly oxidized low density lipoprotein is resistant to efflux. , 2001, Journal of lipid research.

[50]  S. Emr,et al.  Autophagy as a regulated pathway of cellular degradation. , 2000, Science.

[51]  J. Ju,et al.  Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice , 2000, Nature Medicine.

[52]  U. Steinbrecher,et al.  Cholesterol delivered to macrophages by oxidized low density lipoprotein is sequestered in lysosomes and fails to efflux normally. , 2000, Journal of lipid research.

[53]  S. Hazen,et al.  Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. , 2000, The Journal of clinical investigation.

[54]  R. Dean,et al.  Cholesterol and oxysterol metabolism and subcellular distribution in macrophage foam cells. Accumulation of oxidized esters in lysosomes. , 2000, Journal of lipid research.

[55]  G. D. De Meyer,et al.  Cell composition, replication, and apoptosis in atherosclerotic plaques after 6 months of cholesterol withdrawal. , 1998, Circulation research.

[56]  A. Daugherty,et al.  Effects of heterozygous lipoprotein lipase deficiency on diet-induced atherosclerosis in mice. , 1998, Journal of lipid research.

[57]  I. Ifrim,et al.  Sequestration of acetylated LDL and cholesterol crystals by human monocyte-derived macrophages , 1995, The Journal of cell biology.

[58]  R. Dean,et al.  The intracellular storage and turnover of apolipoprotein B of oxidized LDL in macrophages. , 1992, Biochimica et biophysica acta.

[59]  U. Steinbrecher,et al.  Oxidized low density lipoprotein is resistant to cathepsins and accumulates within macrophages. , 1991, The Journal of biological chemistry.

[60]  M. Whiting,et al.  Cholesterol crystal formation and growth in model bile solutions. , 1983, Journal of lipid research.

[61]  R. Gottlieb,et al.  Autophagy in Atherosclerosis: A Cell Survival and Death Phenomenon With Therapeutic Potential , 2008 .

[62]  F. Sánchez‐Madrid,et al.  Rapamycin attenuates atherosclerosis induced by dietary cholesterol in apolipoprotein-deficient mice through a p27 Kip1 -independent pathway. , 2004, Atherosclerosis.

[63]  E. Stadtman,et al.  Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. , 1993, Annual review of biochemistry.