Can an A.I. win a medal in the mathematical olympiad? - Benchmarking mechanized mathematics on pre-university problems

[1]  James R. Curran,et al.  Wide-Coverage Efficient Statistical Parsing with CCG and Log-Linear Models , 2007, Computational Linguistics.

[2]  Adam Naumowicz,et al.  Mizar in a Nutshell , 2010, J. Formaliz. Reason..

[3]  Hirokazu Anai,et al.  Semantic Parsing of Pre-university Math Problems , 2017, ACL.

[4]  Mark Steedman,et al.  Inducing Probabilistic CCG Grammars from Logical Form with Higher-Order Unification , 2010, EMNLP.

[5]  Pedro Quaresma Thousands of Geometric Problems for Geometric Theorem Provers (TGTP) , 2010, Automated Deduction in Geometry.

[6]  Mark Steedman,et al.  The syntactic process , 2004, Language, speech, and communication.

[7]  Noriko H. Arai,et al.  How to find symmetries hidden in combinatorial problems , 2001 .

[8]  Johan Bos,et al.  Wide-Coverage Semantic Analysis with Boxer , 2008, STEP.

[9]  Shuming Shi,et al.  Automatically Solving Number Word Problems by Semantic Parsing and Reasoning , 2015, EMNLP.

[10]  Adam W. Strzebonski Cylindrical algebraic decomposition using local projections , 2016, J. Symb. Comput..

[11]  Luke S. Zettlemoyer,et al.  Learning to Automatically Solve Algebra Word Problems , 2014, ACL.

[12]  Christopher W. Brown Open Non-uniform Cylindrical Algebraic Decompositions , 2015, ISSAC.

[13]  Chitta Baral,et al.  Learning To Use Formulas To Solve Simple Arithmetic Problems , 2016, ACL.

[14]  Manfred Kerber,et al.  A Tough Nut for Mathematical Knowledge Management , 2005, MKM.

[15]  John Harrison,et al.  Without Loss of Generality , 2009, TPHOLs.

[16]  Matthew England,et al.  Experience with Heuristics, Benchmarks & Standards for Cylindrical Algebraic Decomposition , 2016, SC²@SYNASC.

[17]  Oren Etzioni,et al.  Learning to Solve Arithmetic Word Problems with Verb Categorization , 2014, EMNLP.

[18]  Lawrence C. Paulson,et al.  MetiTarski: An Automatic Theorem Prover for Real-Valued Special Functions , 2010, Journal of Automated Reasoning.

[19]  Hirokazu Anai,et al.  Race Against the Teens - Benchmarking Mechanized Math on Pre-university Problems , 2016, IJCAR.

[20]  Cezary Kaliszyk,et al.  TH1: The TPTP Typed Higher-Order Form with Rank-1 Polymorphism , 2016, PAAR@IJCAR.

[21]  Andrew Kennedy,et al.  Abstraction and invariance for algebraically indexed types , 2013, POPL.

[22]  Hidenao Iwane,et al.  Improving a CGS-QE Algorithm , 2015, MACIS.

[23]  Cody Roux,et al.  A Heuristic Prover for Real Inequalities , 2014, Journal of Automated Reasoning.

[24]  Lipu Zhou,et al.  Learn to Solve Algebra Word Problems Using Quadratic Programming , 2015, EMNLP.

[25]  Dan Roth,et al.  Solving General Arithmetic Word Problems , 2016, EMNLP.

[26]  Matthew England,et al.  Truth table invariant cylindrical algebraic decomposition , 2014, J. Symb. Comput..

[27]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[28]  Hirokazu Anai,et al.  The Most Uncreative Examinee: A First Step toward Wide Coverage Natural Language Math Problem Solving , 2014, AAAI.

[29]  Hirokazu Anai,et al.  Formula Simplification for Real Quantifier Elimination Using Geometric Invariance , 2017, ISSAC.

[30]  James H. Davenport,et al.  Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..

[31]  Jack P. Gelb Experiments with a Natural Language Problem-Solving System , 1971, IJCAI.

[32]  Oren Etzioni,et al.  Parsing Algebraic Word Problems into Equations , 2015, TACL.

[33]  Geoff Sutcliffe The TPTP Problem Library and Associated Infrastructure , 2009, Journal of Automated Reasoning.

[34]  Hirokazu Anai,et al.  Efficient Subformula Orders for Real Quantifier Elimination of Non-prenex Formulas , 2015, MACIS.

[35]  Changbo Chen,et al.  Quantifier elimination by cylindrical algebraic decomposition based on regular chains , 2016, J. Symb. Comput..