Highly Oscillatory Problems: Highly oscillatory quadrature
暂无分享,去创建一个
[1] Daan Huybrechs,et al. Complex Gaussian quadrature of oscillatory integrals , 2009, Numerische Mathematik.
[2] A. Iserles. On the numerical quadrature of highly‐oscillating integrals I: Fourier transforms , 2004 .
[3] G. Evans,et al. An alternative method for irregular oscillatory integrals over a finite range , 1994 .
[4] J. R. Webster,et al. A high order, progressive method for the evaluation of irregular oscillatory integrals , 1997 .
[5] R. Piessens,et al. A numerical method for the integration of oscillatory functions , 1971 .
[6] Tobias Jahnke,et al. Adiabatic Integrators for Highly Oscillatory Second-Order Linear Differential Equations with Time-Varying Eigendecomposition , 2005 .
[7] Shuhuang Xiang,et al. Letter to the editor: on quadrature of Bessel transformations , 2005 .
[8] T. Patterson. On high precision methods for the evaluation of fourier integrals with finite and infinite limits , 1976 .
[9] Ronald Cools,et al. Extended quadrature rules for oscillatory integrands , 2003 .
[10] Oscar P. Bruno,et al. Fast, High-Order, High-Frequency Integral Methods for Computational Acoustics and Electromagnetics , 2003 .
[11] David Levin,et al. Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations , 1982 .
[12] G. A. Evans,et al. An expansion method for irregular oscillatory integrals , 1997, Int. J. Comput. Math..
[13] Ayse Alaylioglu,et al. The Use of Chebyshev Series for the Evaluation of Oscillatory Integrals , 1976, Comput. J..
[14] Arieh Iserles,et al. Quadrature methods for multivariate highly oscillatory integrals using derivatives , 2006, Math. Comput..
[15] Sheehan Olver,et al. Moment-free numerical integration of highly oscillatory functions , 2006 .
[16] Erold W. Hinds,et al. Eigensystems Associated with the Complex-Symmetric Kernels of Laser Theory , 1974 .
[17] A. Iserles,et al. On Quadrature Methods for Highly Oscillatory Integrals and Their Implementation , 2004 .
[18] Daan Huybrechs,et al. On the Evaluation of Highly Oscillatory Integrals by Analytic Continuation , 2006, SIAM J. Numer. Anal..
[19] E. A. Flinn. A Modification of Filon's Method of Numerical Integration , 1960, JACM.
[20] Daan Huybrechs,et al. The Construction of cubature rules for multivariate highly oscillatory integrals , 2007, Math. Comput..
[21] Robert C. Forrey,et al. Computing the Hypergeometric Function , 1997 .
[22] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[23] F. Ursell,et al. Integral Equations with a Rapidly Oscillating Kernel , 1969 .
[24] Arieh Iserles,et al. From high oscillation to rapid approximation I: Modified Fourier expansions , 2008 .
[25] J. R. Webster,et al. A comparison of some methods for the evaluation of highly oscillatory integrals , 1999 .
[26] Sheehan Olver,et al. On the Quadrature of Multivariate Highly Oscillatory Integrals Over Non-polytope Domains , 2006, Numerische Mathematik.
[27] Timothy S. Murphy,et al. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .
[28] N. S. Bakhvalov,et al. Evaluation of the integrals of oscillating functions by interpolation at nodes of gaussian quadratures , 1968 .
[29] F. Olver. Asymptotics and Special Functions , 1974 .
[30] J. Munkres. Analysis On Manifolds , 1991 .
[31] Arieh Iserles,et al. On the Method of Neumann Series for Highly Oscillatory Equations , 2004 .
[32] V. Zakian,et al. Numerical Evaluation of Fourier Integrals , 1976 .
[33] Daan Huybrechs,et al. A Sparse Discretization for Integral Equation Formulations of High Frequency Scattering Problems , 2007, SIAM J. Sci. Comput..
[34] Ronald Cools,et al. Quadrature Rules Using First Derivatives for Oscillatory Integrands , 2001 .
[35] L. Filon. III.—On a Quadrature Formula for Trigonometric Integrals. , 1930 .
[36] Arieh Iserles,et al. On the Global Error of Discretization Methods for Highly-Oscillatory Ordinary Differential Equations , 2002 .
[37] Yudell L. Luke,et al. On the computation of oscillatory integrals , 1954, Mathematical Proceedings of the Cambridge Philosophical Society.
[38] Sheehan Olver,et al. Moment-free numerical approximation of highly oscillatory integrals with stationary points , 2007, European Journal of Applied Mathematics.
[39] A. Iserles,et al. Efficient quadrature of highly oscillatory integrals using derivatives , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.