Highly Oscillatory Problems: Highly oscillatory quadrature

[1]  Daan Huybrechs,et al.  Complex Gaussian quadrature of oscillatory integrals , 2009, Numerische Mathematik.

[2]  A. Iserles On the numerical quadrature of highly‐oscillating integrals I: Fourier transforms , 2004 .

[3]  G. Evans,et al.  An alternative method for irregular oscillatory integrals over a finite range , 1994 .

[4]  J. R. Webster,et al.  A high order, progressive method for the evaluation of irregular oscillatory integrals , 1997 .

[5]  R. Piessens,et al.  A numerical method for the integration of oscillatory functions , 1971 .

[6]  Tobias Jahnke,et al.  Adiabatic Integrators for Highly Oscillatory Second-Order Linear Differential Equations with Time-Varying Eigendecomposition , 2005 .

[7]  Shuhuang Xiang,et al.  Letter to the editor: on quadrature of Bessel transformations , 2005 .

[8]  T. Patterson On high precision methods for the evaluation of fourier integrals with finite and infinite limits , 1976 .

[9]  Ronald Cools,et al.  Extended quadrature rules for oscillatory integrands , 2003 .

[10]  Oscar P. Bruno,et al.  Fast, High-Order, High-Frequency Integral Methods for Computational Acoustics and Electromagnetics , 2003 .

[11]  David Levin,et al.  Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations , 1982 .

[12]  G. A. Evans,et al.  An expansion method for irregular oscillatory integrals , 1997, Int. J. Comput. Math..

[13]  Ayse Alaylioglu,et al.  The Use of Chebyshev Series for the Evaluation of Oscillatory Integrals , 1976, Comput. J..

[14]  Arieh Iserles,et al.  Quadrature methods for multivariate highly oscillatory integrals using derivatives , 2006, Math. Comput..

[15]  Sheehan Olver,et al.  Moment-free numerical integration of highly oscillatory functions , 2006 .

[16]  Erold W. Hinds,et al.  Eigensystems Associated with the Complex-Symmetric Kernels of Laser Theory , 1974 .

[17]  A. Iserles,et al.  On Quadrature Methods for Highly Oscillatory Integrals and Their Implementation , 2004 .

[18]  Daan Huybrechs,et al.  On the Evaluation of Highly Oscillatory Integrals by Analytic Continuation , 2006, SIAM J. Numer. Anal..

[19]  E. A. Flinn A Modification of Filon's Method of Numerical Integration , 1960, JACM.

[20]  Daan Huybrechs,et al.  The Construction of cubature rules for multivariate highly oscillatory integrals , 2007, Math. Comput..

[21]  Robert C. Forrey,et al.  Computing the Hypergeometric Function , 1997 .

[22]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[23]  F. Ursell,et al.  Integral Equations with a Rapidly Oscillating Kernel , 1969 .

[24]  Arieh Iserles,et al.  From high oscillation to rapid approximation I: Modified Fourier expansions , 2008 .

[25]  J. R. Webster,et al.  A comparison of some methods for the evaluation of highly oscillatory integrals , 1999 .

[26]  Sheehan Olver,et al.  On the Quadrature of Multivariate Highly Oscillatory Integrals Over Non-polytope Domains , 2006, Numerische Mathematik.

[27]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[28]  N. S. Bakhvalov,et al.  Evaluation of the integrals of oscillating functions by interpolation at nodes of gaussian quadratures , 1968 .

[29]  F. Olver Asymptotics and Special Functions , 1974 .

[30]  J. Munkres Analysis On Manifolds , 1991 .

[31]  Arieh Iserles,et al.  On the Method of Neumann Series for Highly Oscillatory Equations , 2004 .

[32]  V. Zakian,et al.  Numerical Evaluation of Fourier Integrals , 1976 .

[33]  Daan Huybrechs,et al.  A Sparse Discretization for Integral Equation Formulations of High Frequency Scattering Problems , 2007, SIAM J. Sci. Comput..

[34]  Ronald Cools,et al.  Quadrature Rules Using First Derivatives for Oscillatory Integrands , 2001 .

[35]  L. Filon III.—On a Quadrature Formula for Trigonometric Integrals. , 1930 .

[36]  Arieh Iserles,et al.  On the Global Error of Discretization Methods for Highly-Oscillatory Ordinary Differential Equations , 2002 .

[37]  Yudell L. Luke,et al.  On the computation of oscillatory integrals , 1954, Mathematical Proceedings of the Cambridge Philosophical Society.

[38]  Sheehan Olver,et al.  Moment-free numerical approximation of highly oscillatory integrals with stationary points , 2007, European Journal of Applied Mathematics.

[39]  A. Iserles,et al.  Efficient quadrature of highly oscillatory integrals using derivatives , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.