Pion valence quark PDF from lattice QCD

We present lattice results on the valence-quark structure of the pion using a coordinate space method within the framework of Large Momentum Effective Theory (LaMET). In this method one relies on the matrix elements of a Euclidean correlator in boosted hadronic states, which have an operator product expansion at short distance that allows us to extract the moments of PDFs. We renormalize the Euclidean correlator by forming the reduced Ioffe-time distribution (rITD), and reconstruct the second and fourth moments of the pion PDF by taking into account of QCD evolution effects.

[1]  K. Orginos,et al.  Pion valence structure from Ioffe-time parton pseudodistribution functions , 2019, Physical Review D.

[2]  K. Orginos,et al.  Parton distribution functions from Ioffe time pseudo-distributions , 2019, Journal of High Energy Physics.

[3]  P. Petreczky,et al.  Valence parton distribution function of pion from fine lattice , 2019, Physical Review D.

[4]  J.H.Zhang,et al.  Power corrections and renormalons in parton quasidistributions , 2018, Physical Review D.

[5]  N. Sato,et al.  First Monte Carlo Global QCD Analysis of Pion Parton Distributions. , 2018, Physical review letters.

[6]  X. Ji,et al.  Factorization theorem relating Euclidean and light-cone parton distributions , 2018, Physical Review D.

[7]  K. Orginos,et al.  Parton distribution functions on the lattice and in the continuum , 2017, 1710.08288.

[8]  I. Stewart,et al.  Matching the quasiparton distribution in a momentum subtraction scheme , 2017, 1709.04933.

[9]  A. Radyushkin Quasi-parton distribution functions, momentum distributions, and pseudo-parton distribution functions , 2017 .

[10]  K. Kanaya,et al.  Equation of state in (2+1)-flavor QCD with gradient flow , 2016, 1610.09518.

[11]  G. Bali,et al.  Novel quark smearing for hadrons with high momenta in lattice QCD , 2016, 1602.05525.

[12]  X. Ji Parton physics from large-momentum effective field theory , 2014, 1404.6680.

[13]  C. Jung,et al.  Covariant approximation averaging , 2014, 1402.0244.

[14]  X. Ji Parton physics on a Euclidean lattice. , 2013, Physical review letters.

[15]  F. Knechtli,et al.  Flavor symmetry and the static potential with hypercubic blocking , 2001, hep-lat/0103029.

[16]  G. Martinelli,et al.  Scalar densities and baryon mass differences in lattice QCD with Wilson fermions , 1987 .