Material parameter identification using finite elements with time-adaptive higher-order time integration and experimental full-field strain information
暂无分享,去创建一个
[1] Gordon S. G. Beveridge,et al. Optimization: theory and practice , 1970 .
[2] S. Hartmann,et al. Finite deformations of a carbon black-filled rubber. Experiment, optical measurement and material parameter identification using finite elements , 2003 .
[3] Ch. Tsakmakis,et al. Determination of constitutive properties fromspherical indentation data using neural networks. Part i:the case of pure kinematic hardening in plasticity laws , 1999 .
[4] Charles L. Lawson,et al. Solving least squares problems , 1976, Classics in applied mathematics.
[5] S. Reese,et al. A theory of finite viscoelasticity and numerical aspects , 1998 .
[6] Rolf Mahnken,et al. A comprehensive study of a multiplicative elastoplasticity model coupled to damage including parameter identification , 2000 .
[7] N. Draper,et al. Applied Regression Analysis. , 1967 .
[8] S. Hartmann,et al. Displacement control in time‐adaptive non‐linear finite‐element analysis , 2008 .
[9] Stefan Hartmann,et al. A remark on the application of the Newton-Raphson method in non-linear finite element analysis , 2005 .
[10] Jean-José Orteu,et al. 3-D computer vision in experimental mechanics , 2007 .
[11] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[12] Stéphane Avril,et al. The Virtual Fields Method , 2012 .
[13] Stefan Hartmann,et al. Numerical studies on the identification of the material parameters of Rivlin's hyperelasticity using tension-torsion tests , 2001 .
[14] Klaus Schittkowski,et al. Numerical Data Fitting in Dynamical Systems , 2002 .
[15] W. Ehlers,et al. The simple tension problem at large volumetric strains computed from finite hyperelastic material laws , 1998 .
[16] Mark A. Kramer,et al. The simultaneous solution and sensitivity analysis of systems described by ordinary differential equations , 1988, TOMS.
[17] Mathias Wallin,et al. Numerical integration of elasto-plasticity coupled to damage using a diagonal implicit Runge–Kutta integration scheme , 2013 .
[18] S. Hartmann,et al. Comparison of diagonal-implicit, linear-implicit and half-explicit Runge–Kutta methods in non-linear finite element analyses , 2012 .
[19] Ch. Tsakmakis,et al. Determination of constitutive properties fromspherical indentation data using neural networks. Part ii:plasticity with nonlinear isotropic and kinematichardening , 1999 .
[20] J. C. Simo,et al. Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms , 1991 .
[21] Stefan Hartmann,et al. Remarks on the interpretation of current non‐linear finite element analyses as differential–algebraic equations , 2001, International Journal for Numerical Methods in Engineering.
[22] Pierre Vacher,et al. Contribution of heterogeneous strain field measurements and boundary conditions modelling in inverse identification of material parameters , 2011 .
[23] Hubert W. Schreier,et al. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts,Theory and Applications , 2009 .
[24] A. M. Dunker. The decoupled direct method for calculating sensitivity coefficients in chemical kinetics , 1984 .
[25] P. K. Dileep,et al. Material parameter identification of unidirectional fiber-reinforced composites , 2021, Archive of Applied Mechanics.
[26] S. Hartmann,et al. Rosenbrock-type methods applied to finite element computations within finite strain viscoelasticity , 2010 .
[27] Stefan Hartmann,et al. Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility , 2003 .
[28] Fabian Sewerin. On the local identifiability of constituent stress–strain laws for hyperelastic composite materials , 2020 .
[29] Meinhard Kuna,et al. Identification of material parameters of the Gurson–Tvergaard–Needleman model by combined experimental and numerical techniques , 2005 .
[30] E. Hairer,et al. Solving Ordinary Differential Equations II , 2010 .
[31] M. Bonnet,et al. Overview of Identification Methods of Mechanical Parameters Based on Full-field Measurements , 2008 .
[32] James V. Beck,et al. Parameter Estimation in Engineering and Science , 1977 .
[33] S. Hartmann. Computation in finite-strain viscoelasticity: finite elements based on the interpretation as differential–algebraic equations , 2002 .
[34] Joze Korelc,et al. Multi-language and Multi-environment Generation of Nonlinear Finite Element Codes , 2002, Engineering with Computers.
[35] Jože Korelc,et al. Automation of primal and sensitivity analysis of transient coupled problems , 2009 .
[36] Rolf Mahnken,et al. A unified approach for parameter identification of inelastic material models in the frame of the finite element method , 1996 .
[37] M. Ristinmaa,et al. Diagonally implicit Runge–Kutta (DIRK) integration applied to finite strain crystal plasticity modeling , 2018 .
[38] J. D. Humphrey,et al. Identification of response functions from axisymmetric membrane inflation tests: Implications for biomechanics , 1994 .
[39] Dimitri Debruyne,et al. Elasto-plastic material parameter identification by inverse methods: Calculation of the sensitivity matrix , 2007 .
[40] Jonathan Richard Shewchuk,et al. Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..
[41] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[42] A. Sangiovanni-Vincentelli,et al. A multilevel Newton algorithm with macromodeling and latency for the analysis of large-scale nonlinear circuits in the time domain , 1979 .
[43] S. Hartmann. A remark on material parameter identification using finite elements based on constitutive models of evolutionary-type , 2017 .
[44] Mgd Marc Geers,et al. Comparison of the identification performance of conventional FEM updating and integrated DIC , 2016 .
[45] Michel Grédiac,et al. The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements , 2012 .
[46] Paul Steinmann,et al. Generalized Parameter Identification for Finite Viscoelasticity , 2007 .
[47] D. Schnur,et al. An inverse method for determining elastic material properties and a material interface , 1992 .
[48] Marko Lindner,et al. Identification and estimation of constitutive parameters for material laws in elastoplasticity , 2007 .
[49] N. Draper,et al. Applied Regression Analysis: Draper/Applied Regression Analysis , 1998 .
[50] Alexander Lion,et al. On the large deformation behaviour of reinforced rubber at different temperatures , 1997 .
[51] Christian Großmann,et al. Numerik partieller Differentialgleichungen , 1994 .
[52] Berthold Scholtes,et al. Experiments and Material Parameter Identification Using Finite Elements. Uniaxial Tests and Validation Using Instrumented Indentation Tests , 2006 .
[53] J. Olberding,et al. A dual optimization method for the material parameter identification of a biphasic poroviscoelastic hydrogel: Potential application to hypercompliant soft tissues. , 2006, Journal of biomechanics.
[54] R. Alexander. Diagonally implicit runge-kutta methods for stiff odes , 1977 .
[55] P. Haupt,et al. Viscoplasticity of elastomeric materials: experimental facts and constitutive modelling , 2001 .
[56] Joze Korelc,et al. Automatic Generation of Finite-Element Code by Simultaneous Optimization of Expressions , 1997, Theor. Comput. Sci..
[57] R. Kreißig. Auswertung inhomogener Verschiebungsfelder zur Identifikation der Parameter elastisch-plastischer Deformationsgesetze , 1998 .
[58] Rolf Mahnken,et al. Parameter identification for finite deformation elasto-plasticity in principal directions , 1997 .
[59] Stefan Hartmann,et al. Iterative solvers within sequences of large linear systems in non‐linear structural mechanics , 2009 .
[60] S. Hartmann,et al. Identifiability of material parameters in solid mechanics , 2018 .