Material parameter identification using finite elements with time-adaptive higher-order time integration and experimental full-field strain information

In this article, we follow a thorough matrix presentation of material parameter identification using a least-square approach, where the model is given by non-linear finite elements, and the experimental data is provided by both force data as well as full-field strain measurement data based on digital image correlation. First, the rigorous concept of semi-discretization for the direct problem is chosen, where—in the first step—the spatial discretization yields a large system of differential-algebraic equation (DAE-system). This is solved using a time-adaptive, high-order, singly diagonally-implicit Runge–Kutta method. Second, to study the fully analytical versus fully numerical determination of the sensitivities, required in a gradient-based optimization scheme, the force determination using the Lagrange-multiplier method and the strain computation must be provided explicitly. The consideration of the strains is necessary to circumvent the influence of rigid body motions occurring in the experimental data. This is done by applying an external strain determination tool which is based on the nodal displacements of the finite element program. Third, we apply the concept of local identifiability on the entire parameter identification procedure and show its influence on the choice of the parameters of the rate-type constitutive model. As a test example, a finite strain viscoelasticity model and biaxial tensile tests applied to a rubber-like material are chosen.

[1]  Gordon S. G. Beveridge,et al.  Optimization: theory and practice , 1970 .

[2]  S. Hartmann,et al.  Finite deformations of a carbon black-filled rubber. Experiment, optical measurement and material parameter identification using finite elements , 2003 .

[3]  Ch. Tsakmakis,et al.  Determination of constitutive properties fromspherical indentation data using neural networks. Part i:the case of pure kinematic hardening in plasticity laws , 1999 .

[4]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[5]  S. Reese,et al.  A theory of finite viscoelasticity and numerical aspects , 1998 .

[6]  Rolf Mahnken,et al.  A comprehensive study of a multiplicative elastoplasticity model coupled to damage including parameter identification , 2000 .

[7]  N. Draper,et al.  Applied Regression Analysis. , 1967 .

[8]  S. Hartmann,et al.  Displacement control in time‐adaptive non‐linear finite‐element analysis , 2008 .

[9]  Stefan Hartmann,et al.  A remark on the application of the Newton-Raphson method in non-linear finite element analysis , 2005 .

[10]  Jean-José Orteu,et al.  3-D computer vision in experimental mechanics , 2007 .

[11]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[12]  Stéphane Avril,et al.  The Virtual Fields Method , 2012 .

[13]  Stefan Hartmann,et al.  Numerical studies on the identification of the material parameters of Rivlin's hyperelasticity using tension-torsion tests , 2001 .

[14]  Klaus Schittkowski,et al.  Numerical Data Fitting in Dynamical Systems , 2002 .

[15]  W. Ehlers,et al.  The simple tension problem at large volumetric strains computed from finite hyperelastic material laws , 1998 .

[16]  Mark A. Kramer,et al.  The simultaneous solution and sensitivity analysis of systems described by ordinary differential equations , 1988, TOMS.

[17]  Mathias Wallin,et al.  Numerical integration of elasto-plasticity coupled to damage using a diagonal implicit Runge–Kutta integration scheme , 2013 .

[18]  S. Hartmann,et al.  Comparison of diagonal-implicit, linear-implicit and half-explicit Runge–Kutta methods in non-linear finite element analyses , 2012 .

[19]  Ch. Tsakmakis,et al.  Determination of constitutive properties fromspherical indentation data using neural networks. Part ii:plasticity with nonlinear isotropic and kinematichardening , 1999 .

[20]  J. C. Simo,et al.  Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms , 1991 .

[21]  Stefan Hartmann,et al.  Remarks on the interpretation of current non‐linear finite element analyses as differential–algebraic equations , 2001, International Journal for Numerical Methods in Engineering.

[22]  Pierre Vacher,et al.  Contribution of heterogeneous strain field measurements and boundary conditions modelling in inverse identification of material parameters , 2011 .

[23]  Hubert W. Schreier,et al.  Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts,Theory and Applications , 2009 .

[24]  A. M. Dunker The decoupled direct method for calculating sensitivity coefficients in chemical kinetics , 1984 .

[25]  P. K. Dileep,et al.  Material parameter identification of unidirectional fiber-reinforced composites , 2021, Archive of Applied Mechanics.

[26]  S. Hartmann,et al.  Rosenbrock-type methods applied to finite element computations within finite strain viscoelasticity , 2010 .

[27]  Stefan Hartmann,et al.  Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility , 2003 .

[28]  Fabian Sewerin On the local identifiability of constituent stress–strain laws for hyperelastic composite materials , 2020 .

[29]  Meinhard Kuna,et al.  Identification of material parameters of the Gurson–Tvergaard–Needleman model by combined experimental and numerical techniques , 2005 .

[30]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[31]  M. Bonnet,et al.  Overview of Identification Methods of Mechanical Parameters Based on Full-field Measurements , 2008 .

[32]  James V. Beck,et al.  Parameter Estimation in Engineering and Science , 1977 .

[33]  S. Hartmann Computation in finite-strain viscoelasticity: finite elements based on the interpretation as differential–algebraic equations , 2002 .

[34]  Joze Korelc,et al.  Multi-language and Multi-environment Generation of Nonlinear Finite Element Codes , 2002, Engineering with Computers.

[35]  Jože Korelc,et al.  Automation of primal and sensitivity analysis of transient coupled problems , 2009 .

[36]  Rolf Mahnken,et al.  A unified approach for parameter identification of inelastic material models in the frame of the finite element method , 1996 .

[37]  M. Ristinmaa,et al.  Diagonally implicit Runge–Kutta (DIRK) integration applied to finite strain crystal plasticity modeling , 2018 .

[38]  J. D. Humphrey,et al.  Identification of response functions from axisymmetric membrane inflation tests: Implications for biomechanics , 1994 .

[39]  Dimitri Debruyne,et al.  Elasto-plastic material parameter identification by inverse methods: Calculation of the sensitivity matrix , 2007 .

[40]  Jonathan Richard Shewchuk,et al.  Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..

[41]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[42]  A. Sangiovanni-Vincentelli,et al.  A multilevel Newton algorithm with macromodeling and latency for the analysis of large-scale nonlinear circuits in the time domain , 1979 .

[43]  S. Hartmann A remark on material parameter identification using finite elements based on constitutive models of evolutionary-type , 2017 .

[44]  Mgd Marc Geers,et al.  Comparison of the identification performance of conventional FEM updating and integrated DIC , 2016 .

[45]  Michel Grédiac,et al.  The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements , 2012 .

[46]  Paul Steinmann,et al.  Generalized Parameter Identification for Finite Viscoelasticity , 2007 .

[47]  D. Schnur,et al.  An inverse method for determining elastic material properties and a material interface , 1992 .

[48]  Marko Lindner,et al.  Identification and estimation of constitutive parameters for material laws in elastoplasticity , 2007 .

[49]  N. Draper,et al.  Applied Regression Analysis: Draper/Applied Regression Analysis , 1998 .

[50]  Alexander Lion,et al.  On the large deformation behaviour of reinforced rubber at different temperatures , 1997 .

[51]  Christian Großmann,et al.  Numerik partieller Differentialgleichungen , 1994 .

[52]  Berthold Scholtes,et al.  Experiments and Material Parameter Identification Using Finite Elements. Uniaxial Tests and Validation Using Instrumented Indentation Tests , 2006 .

[53]  J. Olberding,et al.  A dual optimization method for the material parameter identification of a biphasic poroviscoelastic hydrogel: Potential application to hypercompliant soft tissues. , 2006, Journal of biomechanics.

[54]  R. Alexander Diagonally implicit runge-kutta methods for stiff odes , 1977 .

[55]  P. Haupt,et al.  Viscoplasticity of elastomeric materials: experimental facts and constitutive modelling , 2001 .

[56]  Joze Korelc,et al.  Automatic Generation of Finite-Element Code by Simultaneous Optimization of Expressions , 1997, Theor. Comput. Sci..

[57]  R. Kreißig Auswertung inhomogener Verschiebungsfelder zur Identifikation der Parameter elastisch-plastischer Deformationsgesetze , 1998 .

[58]  Rolf Mahnken,et al.  Parameter identification for finite deformation elasto-plasticity in principal directions , 1997 .

[59]  Stefan Hartmann,et al.  Iterative solvers within sequences of large linear systems in non‐linear structural mechanics , 2009 .

[60]  S. Hartmann,et al.  Identifiability of material parameters in solid mechanics , 2018 .