A linearly convergent doubly stochastic Gauss–Seidel algorithm for solving linear equations and a certain class of over-parameterized optimization problems
暂无分享,去创建一个
[1] Yurii Nesterov,et al. Linear convergence of first order methods for non-strongly convex optimization , 2015, Math. Program..
[2] Stephen J. Wright,et al. An accelerated randomized Kaczmarz algorithm , 2013, Math. Comput..
[3] Peter Richtárik,et al. Stochastic Dual Ascent for Solving Linear Systems , 2015, ArXiv.
[4] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[5] Karin Schwab,et al. Best Approximation In Inner Product Spaces , 2016 .
[6] Weiqi Zhou,et al. Random reordering in SOR-type methods , 2017, Numerische Mathematik.
[7] S. Kaczmarz. Approximate solution of systems of linear equations , 1993 .
[8] Tong Zhang,et al. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction , 2013, NIPS.
[9] Adrian S. Lewis,et al. Randomized Methods for Linear Constraints: Convergence Rates and Conditioning , 2008, Math. Oper. Res..
[10] Deanna Needell,et al. Paved with Good Intentions: Analysis of a Randomized Block Kaczmarz Method , 2012, ArXiv.
[11] Tianbao Yang,et al. Doubly Stochastic Primal-Dual Coordinate Method for Bilinear Saddle-Point Problem , 2015, 1508.03390.
[12] Nikolaos M. Freris,et al. Randomized Extended Kaczmarz for Solving Least Squares , 2012, SIAM J. Matrix Anal. Appl..
[13] Deanna Needell,et al. Convergence Properties of the Randomized Extended Gauss-Seidel and Kaczmarz Methods , 2015, SIAM J. Matrix Anal. Appl..
[14] D. Needell. Randomized Kaczmarz solver for noisy linear systems , 2009, 0902.0958.
[15] J. Ortega. Numerical Analysis: A Second Course , 1974 .
[16] Stephen J. Wright,et al. An asynchronous parallel stochastic coordinate descent algorithm , 2013, J. Mach. Learn. Res..
[17] John N. Tsitsiklis,et al. Parallel and distributed computation , 1989 .
[18] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[19] Deanna Needell,et al. Rows vs. Columns: Randomized Kaczmarz or Gauss-Seidel for Ridge Regression , 2015, 1507.05844.
[20] Gene H. Golub,et al. Matrix computations , 1983 .
[21] Jesús A. De Loera,et al. A Sampling Kaczmarz-Motzkin Algorithm for Linear Feasibility , 2016, SIAM J. Sci. Comput..
[22] Mark W. Schmidt,et al. Ju n 20 18 Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Lojasiewicz Condition , 2018 .
[23] Quanquan Gu,et al. Accelerated Stochastic Block Coordinate Descent with Optimal Sampling , 2016, KDD.
[24] Peter Richtárik,et al. Semi-stochastic coordinate descent , 2014, Optim. Methods Softw..
[25] R. Vershynin,et al. A Randomized Kaczmarz Algorithm with Exponential Convergence , 2007, math/0702226.
[26] P. Oswald,et al. Convergence analysis for Kaczmarz-type methods in a Hilbert space framework , 2015 .
[27] S. Agmon. The Relaxation Method for Linear Inequalities , 1954, Canadian Journal of Mathematics.
[28] Samuel Awoniyi,et al. A new iterative method for solving non-square systems of linear equations , 2017, J. Comput. Appl. Math..