Cell population tracking and lineage construction with spatiotemporal context

Automated visual-tracking of cell populations in vitro using time-lapse phase contrast microscopy enables quantitative, systematic, and high-throughput measurements of cell behaviors. These measurements include the spatiotemporal quantification of cell migration, mitosis, apoptosis, and the reconstruction of cell lineages. The combination of low signal-to-noise ratio of phase contrast microscopy images, high and varying densities of the cell cultures, topological complexities of cell shapes, and wide range of cell behaviors poses many challenges to existing tracking techniques. This paper presents a fully automated multi-target tracking system that can efficiently cope with these challenges while simultaneously tracking and analyzing thousands of cells observed using time-lapse phase contrast microscopy. The system combines bottom-up and top-down image analysis by integrating multiple collaborative modules, which exploit a fast geometric active contour tracker in conjunction with adaptive interacting multiple models (IMM) motion filtering and spatiotemporal trajectory optimization. The system, which was tested using a variety of cell populations, achieved tracking accuracy in the range of 86.9-92.5%.

[1]  A. Volgenant,et al.  A shortest augmenting path algorithm for dense and sparse linear assignment problems , 1987, Computing.

[2]  H. P. Blom An efficient filter for abruptly changing systems , 1984, The 23rd IEEE Conference on Decision and Control.

[3]  Toshio Miki,et al.  Stem Cell Characteristics of Amniotic Epithelial Cells , 2005, Stem cells.

[4]  Vannary Meas-Yedid,et al.  Segmentation and tracking of migrating cells in videomicroscopy with parametric active contours: a tool for cell-based drug testing , 2002, IEEE Transactions on Medical Imaging.

[5]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Y. Bar-Shalom,et al.  Multiassignment for tracking a large number of overlapping objects [and application to fibroblast cells] , 2001 .

[7]  Bo Zhang,et al.  Tracking fluorescent cells with coupled geometric active contours , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[8]  Dimitris N. Metaxas,et al.  MetaMorphs: Deformable shape and texture models , 2004, CVPR 2004.

[9]  J. Douglas Birdwell,et al.  Efficient Implementation of the Chan-Vese Models Without Solving PDEs , 2006, 2006 IEEE Workshop on Multimedia Signal Processing.

[10]  Xiao Han,et al.  A Topology Preserving Level Set Method for Geometric Deformable Models , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Karl Rohr,et al.  Tracking of Virus Particles in Time-Lapse Fluorescence Microscopy Image Sequences , 2007, Bildverarbeitung für die Medizin.

[12]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[13]  Arnaud Doucet,et al.  Recursive state estimation for multiple switching models with unknown transition probabilities , 2002 .

[14]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[15]  Wiro J. Niessen,et al.  Bayesian tracking for fluorescence microscopic imaging , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[16]  B O Palsson,et al.  Symmetry of initial cell divisions among primitive hematopoietic progenitors is independent of ontogenic age and regulatory molecules. , 1999, Blood.

[17]  Milan Sonka,et al.  Cell Segmentation, Tracking, and Mitosis Detection Using Temporal Context , 2005, MICCAI.

[18]  X. R. Li,et al.  Online Bayesian estimation of transition probabilities for Markovian jump systems , 2004, IEEE Transactions on Signal Processing.

[19]  K. Appel,et al.  Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.

[20]  Rachid Deriche,et al.  A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape , 2007, International Journal of Computer Vision.

[21]  Takeo Kanade,et al.  Online Tracking of Migrating and Proliferating Cells Imaged with Phase-Contrast Microscopy , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[22]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Takeo Kanade,et al.  Tracking of Migrating and Proliferating Cells in Phase-Contrast Microscopy Imagery for Tissue Engineering , 2005, CVBIA.

[24]  D. Chopp Computing Minimal Surfaces via Level Set Curvature Flow , 1993 .

[25]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[26]  A. F. M. SMTHt A Quasi-Bayes Sequential Procedure for Mixtures , 1978 .

[27]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Thomas Brox,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Level Set Segmentation with Multiple Regions Level Set Segmentation with Multiple Regions , 2022 .

[29]  R. Shumway,et al.  AN APPROACH TO TIME SERIES SMOOTHING AND FORECASTING USING THE EM ALGORITHM , 1982 .

[30]  Jens Rittscher,et al.  Spatio-temporal cell cycle phase analysis using level sets and fast marching methods , 2009, Medical Image Anal..

[31]  Johnny Huard,et al.  Gene therapy and tissue engineering based on muscle-derived stem cells. , 2002, Current opinion in molecular therapeutics.

[32]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  W. Clem Karl,et al.  A fast level set method without solving PDEs [image segmentation applications] , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[34]  Jean-Christophe Olivo-Marin,et al.  Coupled parametric active contours , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[37]  Christophe Zimmer,et al.  Segmenting and tracking fluorescent cells in dynamic 3-D microscopy with coupled active surfaces , 2005, IEEE Transactions on Image Processing.

[38]  Florent Ségonne,et al.  Segmentation of medical images under topological constraints , 2005 .

[39]  Jens Rittscher,et al.  Spatio-temporal cell cycle analysis using 3D level set segmentation of unstained nuclei in line scan confocal fluorescence images , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[40]  Ross T. Whitaker,et al.  A streaming narrow-band algorithm: interactive computation and visualization of level sets , 2004, IEEE Transactions on Visualization and Computer Graphics.

[41]  R. Waterston,et al.  Automated cell lineage tracing in Caenorhabditis elegans. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[42]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[43]  Hans-Peter Meinzer,et al.  ALES: Cell Lineage Analysis and Mapping of Developmental Events , 2003, Bioinform..

[44]  Kannappan Palaniappan,et al.  Quantitative cell motility for in vitro wound healing using level set-based active contour tracking , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[45]  Lee E. Weiss,et al.  Bayesian computer-aided experimental design of heterogeneous scaffolds for tissue engineering , 2005, Comput. Aided Des..

[46]  F. Meyer Iterative image transformations for an automatic screening of cervical smears. , 1979, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[47]  K. Appel,et al.  Every planar map is four colorable. Part II: Reducibility , 1977 .

[48]  Takeo Kanade,et al.  Cell Population Tracking and Lineage Construction with Spatiotemporal Context , 2007, MICCAI.

[49]  Roman Goldenberg,et al.  Fast Geodesic Active Contours , 1999, Scale-Space.

[50]  W. Clem Karl,et al.  A curve evolution approach for image segmentation using adaptive flows , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[51]  Karl Rohr,et al.  TRACKING OF VIRUS PARTICLES IN TIME-LAPSE FLUORESCENCE MICROSCOPY IMAGE SEQUENCES , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[52]  Carlos Vázquez,et al.  Multiregion competition: A level set extension of region competition to multiple region image partitioning , 2006, Comput. Vis. Image Underst..

[53]  W. Clem Karl,et al.  Real-time tracking using level sets , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[54]  William Dale Blair,et al.  Fixed-interval smoothing for Markovian switching systems , 1995, IEEE Trans. Inf. Theory.

[55]  Eric D. Miller,et al.  Dose-dependent cell growth in response to concentration modulated patterns of FGF-2 printed on fibrin. , 2006, Biomaterials.

[56]  Hong Wang,et al.  Automated measurement of cell motility and proliferation , 2005, BMC Cell Biology.

[57]  A. F. Smith,et al.  A Quasi‐Bayes Sequential Procedure for Mixtures , 1978 .

[58]  Scott T. Acton,et al.  Level set analysis for leukocyte detection and tracking , 2004, IEEE Transactions on Image Processing.

[59]  K. Appel,et al.  Every planar map is four colorable. Part I: Discharging , 1977 .

[60]  Xuemei Wu,et al.  Integrin-Mediated Preadipocyte Adhesion and Migration on Laminin-1 , 2003, Annals of Biomedical Engineering.

[61]  Shawn Michael Herman,et al.  A Particle Filtering Approach to Joint Passive Radar Tracking and Target Classification , 2002 .

[62]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[63]  Kannappan Palaniappan,et al.  Cell Segmentation Using Coupled Level Sets and Graph-Vertex Coloring , 2006, MICCAI.

[64]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[65]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[66]  Wiro J. Niessen,et al.  Rao-Blackwellized Marginal Particle Filtering for Multiple Object Tracking in Molecular Bioimaging , 2007, IPMI.

[67]  Takeo Kanade,et al.  Computer vision tracking of stemness , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[68]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[69]  Ross T. Whitaker,et al.  GIST: an interactive, GPU-based level set segmentation tool for 3D medical images , 2004, Medical Image Anal..

[70]  Eric D. Miller,et al.  Microenvironments Engineered by Inkjet Bioprinting Spatially Direct Adult Stem Cells Toward Muscle‐ and Bone‐Like Subpopulations , 2008, Stem cells.

[71]  Eric D. Miller,et al.  Engineered spatial patterns of FGF-2 immobilized on fibrin direct cell organization. , 2005, Biomaterials.

[72]  Stanley R. Sternberg,et al.  Biomedical Image Processing , 1983, Computer.

[73]  Jens Rittscher,et al.  Spatio-temporal cell segmentation and tracking for automated screening , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[74]  Philippe Van Ham,et al.  Tracking of migrating cells under phase-contrast video microscopy with combined mean-shift processes , 2005, IEEE Transactions on Medical Imaging.

[75]  B. Roysam,et al.  Automated Cell Lineage Construction: A Rapid Method to Analyze Clonal Development Established with Murine Neural Progenitor Cells , 2006, Cell cycle.

[76]  Paul Zarchan,et al.  Fundamentals of Kalman Filtering: A Practical Approach , 2001 .

[77]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[78]  Houqiang Li,et al.  Automated segmentation and tracking of cells in time-lapse microscopy using watershed and mean shift , 2005, 2005 International Symposium on Intelligent Signal Processing and Communication Systems.