Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium

[1]  J. Marchesi Advancing microbiome research , 2018, Immunology.

[2]  Dan Knights,et al.  Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies , 2016, Nature Biotechnology.

[3]  A. Gessner,et al.  Multicenter quality assessment of 16S ribosomal DNA-sequencing for microbiome analyses reveals high inter-center variability. , 2016, International journal of medical microbiology : IJMM.

[4]  A. Clooney,et al.  16S rRNA gene sequencing of mock microbial populations- impact of DNA extraction method, primer choice and sequencing platform , 2016, BMC Microbiology.

[5]  F. Bushman,et al.  Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota , 2016, Microbiome.

[6]  Tommi Vatanen,et al.  Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans , 2016, Cell.

[7]  Amnon Amir,et al.  Preservation Methods Differ in Fecal Microbiome Stability, Affecting Suitability for Field Studies , 2016, mSystems.

[8]  L. Le Marchand,et al.  Characterization of the gut microbiome in epidemiologic studies: the multiethnic cohort experience. , 2016, Annals of epidemiology.

[9]  Jacques Ravel,et al.  Intricacies of assessing the human microbiome in epidemiologic studies. , 2016, Annals of epidemiology.

[10]  Patrick D Schloss,et al.  Application of a Database-Independent Approach To Assess the Quality of Operational Taxonomic Unit Picking Methods , 2016, mSystems.

[11]  G. Wong,et al.  Characterization of the Gut Microbiome Using 16S or Shotgun Metagenomics , 2016, Front. Microbiol..

[12]  Patrick D. Schloss,et al.  Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system , 2016, PeerJ.

[13]  Marcus J. Claesson,et al.  Comparing Apples and Oranges?: Next Generation Sequencing and Its Impact on Microbiome Analysis , 2016, PloS one.

[14]  John G Kenny,et al.  A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling , 2016, BMC Genomics.

[15]  J. Doré,et al.  Fecal microbiota analysis: an overview of sample collection methods and sequencing strategies. , 2015, Future microbiology.

[16]  S. Tringe,et al.  Primer and platform effects on 16S rRNA tag sequencing , 2015, Front. Microbiol..

[17]  Karen P. Scott,et al.  16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice , 2015, Microbiome.

[18]  Christian von Mering,et al.  Limits to robustness and reproducibility in the demarcation of operational taxonomic units. , 2015, Environmental microbiology.

[19]  Jennifer M. Fettweis,et al.  The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies , 2015, BMC Microbiology.

[20]  M. W. Taylor,et al.  Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences , 2015, Front. Microbiol..

[21]  Improved pipeline for reducing erroneous identification by 16S rRNA sequences using the Illumina MiSeq platform , 2015, Journal of Microbiology.

[22]  Petri Auvinen,et al.  Inconsistent Denoising and Clustering Algorithms for Amplicon Sequence Data , 2014, J. Comput. Biol..

[23]  Paul Turner,et al.  Reagent and laboratory contamination can critically impact sequence-based microbiome analyses , 2014, BMC Biology.

[24]  Rob Knight,et al.  Advancing the Microbiome Research Community , 2014, Cell.

[25]  N. Zavaljevski,et al.  16S rRNA gene pyrosequencing of reference and clinical samples and investigation of the temperature stability of microbiome profiles , 2014, Microbiome.

[26]  A. Butte,et al.  The Integrative Human Microbiome Project: Dynamic Analysis of Microbiome-Host Omics Profiles during Periods of Human Health and Disease , 2014, Cell host & microbe.

[27]  David P. Kreil,et al.  A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control consortium , 2014, Nature Biotechnology.

[28]  Michael W. Hall,et al.  Evaluating Bias of Illumina-Based Bacterial 16S rRNA Gene Profiles , 2014, Applied and Environmental Microbiology.

[29]  Karsten Kristiansen,et al.  Choice of bacterial DNA extraction method from fecal material influences community structure as evaluated by metagenomic analysis , 2014, Microbiome.

[30]  Sharon L. Grim,et al.  Analysis, Optimization and Verification of Illumina-Generated 16S rRNA Gene Amplicon Surveys , 2014, PloS one.

[31]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[32]  H. Drummond,et al.  The Impact of Different DNA Extraction Kits and Laboratories upon the Assessment of Human Gut Microbiota Composition by 16S rRNA Gene Sequencing , 2014, PloS one.

[33]  Jacques Ravel,et al.  An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform , 2014, Microbiome.

[34]  Pelin Yilmaz,et al.  The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks , 2013, Nucleic Acids Res..

[35]  James R. Cole,et al.  Ribosomal Database Project: data and tools for high throughput rRNA analysis , 2013, Nucleic Acids Res..

[36]  W. D. de Vos,et al.  Evaluation of microbial community reproducibility, stability and composition in a human distal gut chemostat model. , 2013, Journal of microbiological methods.

[37]  Robert C. Edgar,et al.  UPARSE: highly accurate OTU sequences from microbial amplicon reads , 2013, Nature Methods.

[38]  R. Knight,et al.  Meta-analyses of studies of the human microbiota , 2013, Genome research.

[39]  A. Fodor,et al.  Stochastic changes over time and not founder effects drive cage effects in microbial community assembly in a mouse model , 2013, The ISME Journal.

[40]  Sarah L. Westcott,et al.  Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform , 2013, Applied and Environmental Microbiology.

[41]  W. Thomas,et al.  Assessing the Consequences of Denoising Marker-Based Metagenomic Data , 2013, PloS one.

[42]  Lynn K. Carmichael,et al.  Evaluation of 16S rDNA-Based Community Profiling for Human Microbiome Research , 2012, PloS one.

[43]  C. Huttenhower,et al.  Metagenomic microbial community profiling using unique clade-specific marker genes , 2012, Nature Methods.

[44]  Katherine H. Huang,et al.  A framework for human microbiome research , 2012, Nature.

[45]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[46]  J. Ravel,et al.  Evaluation of Methods for the Extraction and Purification of DNA from the Human Microbiome , 2012, PloS one.

[47]  J. Clemente,et al.  Human gut microbiome viewed across age and geography , 2012, Nature.

[48]  William A. Walters,et al.  Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms , 2012, The ISME Journal.

[49]  Krzysztof Trzciński,et al.  Deep Sequencing Analyses of Low Density Microbial Communities: Working at the Boundary of Accurate Microbiota Detection , 2012, PloS one.

[50]  Rob Knight,et al.  Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences , 2012, The ISME Journal.

[51]  Eric P. Nawrocki,et al.  An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea , 2011, The ISME Journal.

[52]  H. Ochman,et al.  Illumina-based analysis of microbial community diversity , 2011, The ISME Journal.

[53]  Daniel G. Brown,et al.  PANDAseq: paired-end assembler for illumina sequences , 2012, BMC Bioinformatics.

[54]  Patrick D. Schloss,et al.  Reducing the Effects of PCR Amplification and Sequencing Artifacts on 16S rRNA-Based Studies , 2011, PloS one.

[55]  Steven Salzberg,et al.  BIOINFORMATICS ORIGINAL PAPER , 2004 .

[56]  David M. Simcha,et al.  Tackling the widespread and critical impact of batch effects in high-throughput data , 2010, Nature Reviews Genetics.

[57]  S. Massart,et al.  Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa , 2010, Proceedings of the National Academy of Sciences.

[58]  B. Haas,et al.  A Catalog of Reference Genomes from the Human Microbiome , 2010, Science.

[59]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[60]  J. Eisen,et al.  Metagenomic Sequencing of an In Vitro-Simulated Microbial Community , 2010, PloS one.

[61]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[62]  Martin Hartmann,et al.  Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities , 2009, Applied and Environmental Microbiology.

[63]  W. Verstraete,et al.  Fermentation by gut microbiota cultured in a simulator of the human intestinal microbial ecosystem is improved by supplementing a soygerm powder. , 2000, The Journal of nutrition.

[64]  R. Hoover,et al.  Case-control study of colorectal cancer and fecal mutagenicity. , 1989, Cancer research.

[65]  R. Hoover,et al.  Case-control study of colorectal cancer and fecapentaene excretion. , 1989, Cancer research.