Shock Waves in Dispersive Hydrodynamics with Nonconvex Dispersion

Dissipationless hydrodynamics regularized by dispersion describe a number of physical media including water waves, nonlinear optics, and Bose--Einstein condensates. As in the classical theory of hyperbolic equations where a nonconvex flux leads to nonclassical solution structures, a nonconvex linear dispersion relation provides an intriguing dispersive hydrodynamic analogue. Here, the fifth order Korteweg--de Vries (KdV) equation, also known as the Kawahara equation, a classical model for shallow water waves, is shown to be a universal model of Eulerian hydrodynamics with higher order dispersive effects. Utilizing asymptotic methods and numerical computations, this work classifies the long-time behavior of solutions for step-like initial data. For convex dispersion, the result is a dispersive shock wave (DSW), qualitatively and quantitatively bearing close resemblance to the KdV DSW. For nonconvex dispersion, three distinct dynamic regimes are observed. For small amplitude jumps, a perturbed KdV DSW with ...

[1]  P. Kevrekidis,et al.  Matter-wave bright solitons in spin-orbit coupled Bose-Einstein condensates. , 2012, Physical review letters.

[2]  Takuji Kawahara,et al.  Oscillatory Solitary Waves in Dispersive Media , 1972 .

[3]  S. Trillo,et al.  Radiative effects driven by shock waves in cavity-less four-wave mixing combs. , 2014, Optics letters.

[4]  Jianke Yang,et al.  Semi-stability of embedded solitons in the general fifth-order KdV equation , 2002, nlin/0209022.

[5]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.

[6]  G. El,et al.  Resolution of a shock in hyperbolic systems modified by weak dispersion. , 2005, Chaos.

[7]  A. Mussot,et al.  Parametric excitation of multiple resonant radiations from localized wavepackets , 2015, Scientific Reports.

[8]  Jianke Yang,et al.  Newton-conjugate-gradient methods for solitary wave computations , 2009, J. Comput. Phys..

[9]  H. Hanazaki,et al.  Numerical simulation of capillary gravity waves excited by an obstacle in shallow water , 2015 .

[10]  Nicholas K. Lowman,et al.  Dispersive shock waves in viscously deformable media , 2013, Journal of Fluid Mechanics.

[11]  R. Grimshaw,et al.  The generation of radiating waves in a singularly-perturbed Korteweg-de Vries equation , 1993 .

[12]  M. Hoefer,et al.  Dispersive shock waves and modulation theory , 2016, 1602.06163.

[13]  A. Marchenko Long waves in shallow liquid under ice cover , 1988 .

[14]  Y. Matsuno Hamiltonian formulation of the extended Green–Naghdi equations , 2015, 1503.08520.

[15]  N. F. Smyth,et al.  Radiating dispersive shock waves in non-local optical media , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  S. Trillo,et al.  Dispersive radiation induced by shock waves in passive resonators. , 2014, Optics letters.

[17]  T. Akylas,et al.  On the stability of solitary waves with decaying oscillatory tails , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  Boris Dubrovin,et al.  Numerical Study of Breakup in Generalized Korteweg-de Vries and Kawahara Equations , 2010, SIAM J. Appl. Math..

[19]  D. Peregrine A Modern Introduction to the Mathematical Theory of Water Waves. By R. S. Johnson. Cambridge University Press, 1997. xiv+445 pp. Hardback ISBN 0 521 59172 4 £55.00; paperback 0 521 59832 X £19.95. , 1998, Journal of Fluid Mechanics.

[20]  S. Trillo,et al.  Dispersive wave emission from wave breaking. , 2013, Optics letters.

[21]  A. Gurevich,et al.  Nonstationary structure of a collisionless shock wave , 1973 .

[22]  I. B. Spielman,et al.  Spin–orbit-coupled Bose–Einstein condensates , 2011, Nature.

[23]  I. B. Spielman,et al.  Synthetic magnetic fields for ultracold neutral atoms , 2009, Nature.

[24]  G. A. El,et al.  Dispersive and Diffusive-Dispersive Shock Waves for Nonconvex Conservation Laws , 2015, SIAM Rev..

[25]  J. Bona,et al.  Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[26]  B. Malomed,et al.  Solitary waves with damped oscillatory tails: an analysis of the fifth-order Korteweg-de Vries equation , 1994 .

[27]  Alfred Ramani,et al.  Structural stability of the Korteweg-De Vries solitons under a singular perturbation , 1988 .

[28]  A. Il'ichev,et al.  Soliton-like structures on a liquid surface under an ice cover , 2015 .

[29]  John K. Hunter,et al.  Existence of perturbed solitary wave solutions to a model equation for water waves , 1988 .

[30]  Frédéric Dias,et al.  On the fully-nonlinear shallow-water generalized Serre equations , 2010 .

[31]  S. Trillo,et al.  Resonant radiation shed by dispersive shock waves , 2013, 1309.6227.