A topological perspective on distributed network algorithms

[1]  Sergio Rajsbaum,et al.  The topology of look-compute-move robot wait-free algorithms with hard termination , 2018, Distributed Computing.

[2]  Bowen Alpern,et al.  Defining Liveness , 1984, Inf. Process. Lett..

[3]  Leonid Barenboim,et al.  Locally-Iterative Distributed (Δ+ 1): -Coloring below Szegedy-Vishwanathan Barrier, and Applications to Self-Stabilization and to Restricted-Bandwidth Models , 2017, PODC.

[4]  Maurice Herlihy,et al.  The topological structure of asynchronous computability , 1999, JACM.

[5]  Jukka Suomela,et al.  Lower Bounds for Maximal Matchings and Maximal Independent Sets , 2019, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[6]  Jukka Suomela,et al.  Survey of local algorithms , 2013, CSUR.

[7]  Emmanuel Godard,et al.  k-Set Agreement in Communication Networks with Omission Faults , 2016, OPODIS.

[8]  Afonso Ferreira,et al.  Computing multicast trees in dynamic networks and the complexity of connected components in evolving graphs , 2012, Journal of Internet Services and Applications.

[9]  Maurice Herlihy,et al.  Algebraic spans , 2000 .

[10]  Michael E. Saks,et al.  Wait-free k-set agreement is impossible: the topology of public knowledge , 1993, STOC.

[11]  Lewis Tseng,et al.  Network Topology and Fault-Tolerant Consensus , 2019, Network Topology and Fault-Tolerant Consensus.

[12]  Seth Pettie,et al.  An optimal distributed (Δ+1)-coloring algorithm? , 2018, STOC.

[13]  Leonid Barenboim,et al.  The Locality of Distributed Symmetry Breaking , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[14]  Nancy A. Lynch,et al.  Distributed computation in dynamic networks , 2010, STOC '10.

[15]  Sergio Rajsbaum,et al.  New combinatorial topology bounds for renaming: The upper bound , 2012, JACM.

[16]  Maurice Herlihy,et al.  The asynchronous computability theorem for t-resilient tasks , 1993, STOC.

[17]  Nathan Linial,et al.  Locality in Distributed Graph Algorithms , 1992, SIAM J. Comput..

[18]  Fabian Kuhn,et al.  On the complexity of local distributed graph problems , 2016, STOC.

[19]  Mohsen Ghaffari,et al.  An Improved Distributed Algorithm for Maximal Independent Set , 2015, SODA.

[20]  Jukka Suomela,et al.  A lower bound for the distributed Lovász local lemma , 2015, STOC.

[21]  Ulrich Schmid,et al.  Topological Characterization of Consensus under General Message Adversaries , 2019, PODC.

[22]  Eli Gafni,et al.  Generalized FLP impossibility result for t-resilient asynchronous computations , 1993, STOC.

[23]  Pierre Fraigniaud,et al.  A Topological Perspective on Distributed Network Algorithms , 2019, SIROCCO.

[24]  Maurice Herlihy,et al.  An Axiomatic Approach to Computing the Connectivity of Synchronous and Asynchronous Systems , 2009, GETCO@DISC.

[25]  Dan Alistarh,et al.  Why extension-based proofs fail , 2019, STOC.

[26]  Michel Raynal,et al.  The Iterated Restricted Immediate Snapshot Model , 2008, COCOON.

[27]  Fabian Kuhn,et al.  Deterministic Distributed Edge-Coloring via Hypergraph Maximal Matching , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[28]  Maurice Herlihy,et al.  Bounds on the Step and Namespace Complexity of Renaming , 2019, SIAM J. Comput..

[29]  Mika Göös,et al.  Linear-in-$$\varDelta $$Δ lower bounds in the LOCAL model , 2015, Distributed Computing.

[30]  André Schiper,et al.  The Heard-Of model: computing in distributed systems with benign faults , 2009, Distributed Computing.

[31]  Matthias Függer,et al.  Approximate Consensus in Highly Dynamic Networks: The Role of Averaging Algorithms , 2014, ICALP.

[32]  Matthias Függer,et al.  Tight Bounds for Asymptotic and Approximate Consensus , 2017, PODC.

[33]  Roger Wattenhofer,et al.  Local Computation , 2010, J. ACM.

[34]  Peter Robinson,et al.  Gracefully Degrading Consensus and k-Set Agreement in Directed Dynamic Networks , 2015, NETYS.

[35]  Maurice Herlihy,et al.  Distributed computability in Byzantine asynchronous systems , 2013, STOC.

[36]  Fabian Kuhn,et al.  Dynamic networks: models and algorithms , 2011, SIGA.

[37]  Yoram Moses,et al.  Coordinated consensus in dynamic networks , 2011, PODC '11.

[38]  Emmanuel Godard,et al.  A characterization of oblivious message adversaries for which Consensus is solvable , 2015, Theor. Comput. Sci..

[39]  Nancy A. Lynch,et al.  Tight bounds for k-set agreement , 2000, J. ACM.

[40]  Sergio Rajsbaum,et al.  New combinatorial topology bounds for renaming: the lower bound , 2010, Distributed Computing.

[41]  Matthias Függer,et al.  Fast, Robust, Quantizable Approximate Consensus , 2016, ICALP.

[42]  Nicola Santoro,et al.  Expressivity of Time-Varying Graphs , 2013, FCT.

[43]  Nancy A. Lynch,et al.  Impossibility of distributed consensus with one faulty process , 1985, JACM.