Witnessing effective entanglement in a continuous variable prepare-and-measure setup and application to a quantum key distribution scheme using postselection

We report an experimental demonstration of effective entanglement in a prepare-and-measure type of quantum key distribution protocol. Coherent polarization states and heterodyne measurement to characterize the transmitted quantum states are used, thus enabling us to reconstruct directly their Q function. By evaluating the excess noise of the states, we experimentally demonstrate that they fulfill a nonseparability criterion previously presented by Rigas et al. [J. Rigas, O. Guehne, and N. Luetkenhaus, Phys. Rev. A 73, 012341 (2006)]. For a restricted eavesdropping scenario, we predict key rates using postselection of the heterodyne measurement results.

[1]  H. Haus,et al.  Characteristic functions and quantum measurements of optical observables , 1989 .

[2]  Norbert Lütkenhaus,et al.  Entanglement as a precondition for secure quantum key distribution. , 2004, Physical review letters.

[3]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[4]  N. G. Walker,et al.  Quantum Theory of Multiport Optical Homodyning , 1987 .

[5]  G Leuchs,et al.  Continuous variable quantum cryptography: beating the 3 dB loss limit. , 2002, Physical review letters.

[6]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[7]  M. Koashi Unconditional security of coherent-state quantum key distribution with a strong phase-reference pulse. , 2004, Physical review letters.

[8]  Ryo Namiki,et al.  Security of quantum cryptography using balanced homodyne detection , 2002, quant-ph/0205191.

[9]  N. Gisin,et al.  Quantum correlations and secret bits. , 2003, Physical review letters.

[10]  A. Theodore Forrester,et al.  Photoelectric Mixing As a Spectroscopic Tool , 1961 .

[11]  Vogel,et al.  Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. , 1989, Physical review. A, General physics.

[12]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[13]  Gerd Leuchs,et al.  Continuous-variable quantum key distribution using polarization encoding and post selection , 2004, quant-ph/0403064.

[14]  Eric Corndorf,et al.  High-speed data encryption over 25 km of fiber by two-mode coherent-state quantum cryptography. , 2003, Optics letters.

[15]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[16]  R. Namiki,et al.  Quantum cryptography using pulsed homodyne detection , 2000, quant-ph/0008037.

[17]  I. D. Ivanović How to differentiate between non-orthogonal states , 1987 .

[18]  L. Mandel Heterodyne Detection of a Weak Light Beam , 1966 .

[19]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[20]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[21]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[22]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  U. Fano Remarks on the Classical and Quantum-Mechanical Treatment of Partial Polarization* , 1949 .

[24]  Jeffrey H. Shapiro,et al.  Optical communication with two-photon coherent states-Part III: Quantum measurements realizable with photoemissive detectors , 1980, IEEE Trans. Inf. Theory.

[25]  Gisin,et al.  Unambiguous quantum measurement of nonorthogonal states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[26]  Stig Stenholm,et al.  Simultaneous measurement of conjugate variables , 1992 .

[27]  Vikram Sharma,et al.  No-switching quantum key distribution using broadband modulated coherent light. , 2005, Physical review letters.

[28]  Paul,et al.  Realistic optical homodyne measurements and quasiprobability distributions. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[29]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[30]  Pérès,et al.  Quantum-state disturbance versus information gain: Uncertainty relations for quantum information. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[31]  A. Yariv Optical electronics in modern communications , 1997 .

[32]  Christian Weedbrook,et al.  Quantum cryptography without switching. , 2004, Physical review letters.

[33]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[34]  Norbert Lutkenhaus,et al.  Entanglement verification for quantum-key-distribution systems with an underlying bipartite qubit-mode structure , 2006 .

[35]  Marcos Curty,et al.  Detecting two-party quantum correlations in quantum-key-distribution protocols (12 pages) , 2005 .

[36]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[37]  J. L. Kelly,et al.  B.S.T.J. briefs: On the simultaneous measurement of a pair of conjugate observables , 1965 .

[38]  N. Cerf,et al.  Quantum key distribution using gaussian-modulated coherent states , 2003, Nature.

[39]  Edward Collett,et al.  Stokes Parameters for Quantum Systems , 1970 .

[40]  Paul,et al.  Phase measurement and Q function. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[41]  Jeffrey H. Shapiro,et al.  Phase and amplitude uncertainties in heterodyne detection , 1984 .

[42]  N. Lutkenhaus,et al.  Efficiency of coherent-state quantum cryptography in the presence of loss: Influence of realistic error correction , 2005, quant-ph/0512013.

[43]  Christine Silberhorn,et al.  Polarization squeezing and continuous-variable polarization entanglement , 2002 .