Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity.

The resonance frequency of an InAs quantum dot strongly coupled to a GaAs photonic-crystal cavity was electrically controlled via the quadratic quantum confined Stark effect. Stark shifts up to 0.3 meV were achieved using a lateral Schottky electrode that created a local depletion region at the location of the quantum dot. We report switching of a probe laser coherently coupled to the cavity up to speeds as high as 150 MHz, limited by the RC constant of the transmission line. The coupling strength g and the magnitude of the Stark shift with electric field were investigated while coherently probing the system.

[1]  J. Vučković,et al.  Local temperature control of photonic crystal devices via micron-scale electrical heaters , 2009, 0904.4224.

[2]  Qianfan Xu,et al.  Silicon microring resonators with 1.5-μm radius , 2008 .

[3]  Dirk Englund,et al.  Local quantum dot tuning on photonic crystal chips , 2007 .

[4]  Oded Cohen,et al.  Fast silicon optical modulator , 2004, SPIE OPTO.

[5]  B. Gerardot,et al.  Voltage-controlled optics of a quantum dot. , 2004, Physical review letters.

[6]  Jurgen Michel,et al.  Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators , 2008 .

[7]  D. Yakovlev,et al.  Control of quantum dot excitons by lateral electric fields , 2006 .

[8]  Technical University of Denmark,et al.  Electrical control of spontaneous emission and strong coupling for a single quantum dot , 2008, 0810.3010.

[9]  C. Burrus,et al.  Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect , 1984 .

[10]  A. Andreev,et al.  Manipulating quantum-confined Stark shift in electroluminescence from quantum dots with side gates , 2008 .

[11]  Dirk Englund,et al.  Dipole induced transparency in waveguide coupled photonic crystal cavities , 2008 .

[12]  O. Krebs,et al.  Manipulating exciton fine structure in quantum dots with a lateral electric field , 2006, cond-mat/0608711.

[13]  Qianfan Xu,et al.  12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. , 2007, Optics express.

[14]  S. Gulde,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2007, Nature.

[15]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[16]  Dirk Englund,et al.  Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade , 2008, 0804.2740.

[17]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[18]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[19]  K. Abbink,et al.  24 , 1871, You Can Cross the Massacre on Foot.

[20]  Wei Jiang,et al.  Capacitor-embedded 0.54 pJ/bit silicon-slot photonic crystal waveguide modulator. , 2009, Optics letters.

[21]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[22]  D. Englund,et al.  Coherent excitation of a strongly coupled quantum dot - cavity system , 2009, 0902.2428.

[23]  Dirk Englund,et al.  Controlling Cavity Reflectivity with a Single Quantum Dot , 2007 .

[24]  M. Paniccia,et al.  A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.

[25]  D. Englund,et al.  Efficient photonic crystal cavity-waveguide couplers , 2006, physics/0610105.

[26]  U. Bockelmann,et al.  ELECTRIC-FIELD EFFECTS ON EXCITONS IN QUANTUM DOTS , 1998 .

[27]  Dirk Englund,et al.  Controlled Phase Shifts with a Single Quantum Dot , 2008, Science.

[28]  Andrei Faraon,et al.  An optical modulator based on a single strongly coupled quantum dot--cavity system in a p-i-n junction. , 2009, Optics express.

[29]  S. Noda,et al.  Recent Progresses and Future Prospects of Two- and Three-Dimensional Photonic Crystals , 2006, Journal of Lightwave Technology.

[30]  Edo Waks,et al.  Dipole induced transparency in drop-filter cavity-waveguide systems. , 2006, Physical review letters.

[31]  T. Asano,et al.  Spontaneous-emission control by photonic crystals and nanocavities , 2007 .