Recent developments in seismic seabed oil reservoir monitoring applications using fibre-optic sensing networks

This review looks at recent developments in seismic seabed oil reservoir monitoring techniques using fibre-optic sensing networks. After a brief introduction covering the background and scope of the review, the following section focuses on state-of-the-art fibre-optic hydrophones and accelerometers used for seismic applications. Related metrology aspects of the sensor such as measurement of sensitivity, noise and cross-axis performance are addressed. The third section focuses on interrogation systems. Two main phase-based competing systems have emerged over the past two decades for seismic applications, with a third technique showing much promise; these have been compared in terms of general performance.

[1]  Meng Pang,et al.  Analysis and Amelioration About the Cross-Sensitivity of a Fiber-Optic Accelerometer Based on Compliant Cylinder , 2008, Journal of Lightwave Technology.

[2]  José A Ferrari,et al.  Cancellation of bending-induced birefringence in single-mode fibers: application to faraday sensors. , 2006, Applied optics.

[3]  J. Dakin,et al.  Novel optical fibre hydrophone array using a single laser source and detector , 1984 .

[4]  J P Dakin,et al.  Multiplexed and distributed optical fibre sensor systems , 1987 .

[5]  David A. Jackson,et al.  Design of a compliant-cylinder-type fiber-optic accelerometer: theory and experiment. , 1995, Applied optics.

[6]  A. Dandridge,et al.  Suppression of double Rayleigh scattering-induced excess noise in remotely interrogated fiber-optic interferometric sensors , 2003, IEEE Photonics Technology Letters.

[7]  Min Zhang,et al.  Research on the acceleration responsivity of the fiber-optic air-backed mandrel hydrophones , 2007, SPIE/COS Photonics Asia.

[8]  P. Nash,et al.  High efficiency TDM/WDM architectures for seismic reservoir monitoring , 2009, International Conference on Optical Fibre Sensors.

[9]  B. Culshaw,et al.  Fiber-Optic Sensing: A Historical Perspective , 2008, Journal of Lightwave Technology.

[10]  Erlend Rønnekleiv,et al.  Reduction of crosstalk in inline sensor arrays using inverse scattering , 2008, International Conference on Optical Fibre Sensors.

[11]  Mark H. Houston Requirements, Constraints and Advantages of Fiber Optic Sensor Arrays for Permanent Offshore Applications , 2003 .

[12]  Fang Li,et al.  An optimized design of a fiber optic hydrophone based on a flat diaphragm and multilayer fiber coils: A theoretical approach , 2009 .

[13]  Malcolm B. Gray,et al.  Passive nano-g fiber-accelerometer array over 100 km , 2009, International Conference on Optical Fibre Sensors.

[14]  P. Kruit,et al.  Reliability Study of RTV 566 for Its Application as a “Spring” , 2008, IEEE Transactions on Device and Materials Reliability.

[15]  Geoffrey A. Cranch,et al.  Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications , 2003 .

[16]  T. Ding,et al.  An investigation of a fiber-optic air-backed mandrel hydrophone , 2008 .

[17]  J. M. D. Freitas,et al.  Probability density functions for intensity induced phase noise in CW phase demodulation systems , 2007 .

[18]  Kenneth T. V. Grattan,et al.  Fiber optic sensor technology: an overview , 2000 .

[19]  Phillip J. Nash,et al.  32-element TDM optical hydrophone array , 1998, Optical Fibre Sensors.

[20]  Yuliang Liu,et al.  Crosstalk Analysis of a Fiber Laser Sensor Array System Based on Digital Phase-Generated Carrier Scheme , 2008, Journal of Lightwave Technology.

[21]  Steve Li,et al.  Low noise planar external cavity laser for interferometric fiber optic sensors , 2008, Defense + Commercial Sensing.

[22]  David A. Jackson,et al.  Improvement on phase generated carrier technique for passive demodulation of miniature interferometric sensors , 1994 .

[23]  Daniel A Shaddock,et al.  Pico-strain multiplexed fiber optic sensor array operating down to infra-sonic frequencies. , 2009, Optics express.

[24]  G. Hocker,et al.  Fiber optics strain gauge. , 1978, Applied optics.

[25]  W. Pilkey Formulas for stress, strain, and structural matrices , 1994 .

[26]  M. Martinelli A universal compensator for polarization changes induced by birefringence on a retracing beam , 1989 .

[27]  Philip John Nash,et al.  Measurement of sensor axis misalignment in fibre-optic accelerometersThis paper was presented at the , 2006 .

[28]  Yan Zhang,et al.  Fiber Bragg grating sensors for seismic wave detection , 2005, International Conference on Optical Fibre Sensors.

[29]  R. Smith Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering. , 1972, Applied optics.

[30]  Alan D. Kersey,et al.  Polarisation-insensitive fibre optic Michelson interferometer , 1991 .

[31]  Morten Eriksrud,et al.  Fibre optic ocean bottom seismic cable system: from innovation to commercial success , 2009, International Conference on Optical Fibre Sensors.

[32]  Yuliang Liu,et al.  Design of a fibre-optic disc accelerometer: theory and experiment , 2007 .

[33]  Qian Tian,et al.  Performance improvement of phase-generated carrier method by eliminating laser-intensity modulation for optical seismometer , 2010 .

[34]  J.H. Chow,et al.  Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications , 2005, Journal of Lightwave Technology.

[35]  David J. Richardson,et al.  Intensity noise suppression in fibre DFB laser using gain saturated SOA , 2004 .

[36]  D.J.W. Hardie,et al.  Review of numerical methods for predicting sonar array performances , 1996 .

[37]  K. Wanser,et al.  Fundamental phase noise limit in optical fibres due to temperature fluctuations , 1992 .

[38]  V Casey,et al.  Elastomer rubbers as deflection elements in pressure sensors: investigation of properties using a custom designed programmable elastomer test rig , 2003 .

[39]  B. Cabon,et al.  Theoretical and experimental analysis of influence of phase-to-intensity noise conversion in interferometric systems , 2004, Journal of Lightwave Technology.

[40]  F. Bookstein Fitting conic sections to scattered data , 1979 .

[41]  Yanbiao Liao,et al.  A 3-component fiber-optic accelerometer for well logging , 2004 .

[42]  T. Hofler,et al.  A fiber-optic interferometric seismometer , 1987 .

[43]  De Freitas,et al.  Digital Filter Design Solutions , 2005 .

[44]  Zhou Meng,et al.  Fiber-optic hydrophone using a cylindrical Helmholtz resonator as a mechanical anti-aliasing filter. , 2008, Optics letters.

[45]  John Canning,et al.  Properties of Specialist Fibres and Bragg Gratings for Optical Fiber Sensors , 2009, J. Sensors.

[46]  Alan B. Tveten,et al.  Progress in Fiber Optic Acoustic and Seismic Sensing , 2006 .

[47]  J. M. D. Freitas RAPID COMMUNICATION: Effect of noise on accelerometer vector measurement in an ideal tri-axial system , 2010 .

[48]  Jianxin Yuan,et al.  Geophone orientation and coupling in three‐component sea‐floor data: a case study , 1999 .

[49]  Malcolm B. Gray,et al.  Multiplexed fiber optic acoustic sensors in a 120 km loop using RF modulation , 2007, SPIE Optics East.

[50]  E. Black An introduction to Pound–Drever–Hall laser frequency stabilization , 2001 .

[51]  Andrew W. Fitzgibbon,et al.  Direct Least Square Fitting of Ellipses , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  Min Zhang,et al.  Performance improvement of PGC method by using lookup table for optical seismometer , 2009, International Conference on Optical Fibre Sensors.

[53]  Hilde Nakstad,et al.  Realisation of a full-scale fibre optic ocean bottom seismic system , 2008, International Conference on Optical Fibre Sensors.

[54]  Cosimo Trono,et al.  Development of an erbium-doped fibre laser as a deep-sea hydrophone , 2005 .

[55]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[56]  E. Berg,et al.  Vector Fidelity in Ocean Bottom Seismic Systems , 2002 .

[57]  G. P. O'Hara Mechanical Properties of Silicone Rubber in a Closed Volume , 1983 .

[58]  G. M. Wenz Acoustic Ambient Noise in the Ocean: Spectra and Sources , 1962 .

[59]  Y. Liao,et al.  Signal dependence of the phase-generated carrier method , 2007 .

[60]  G. Wang,et al.  An investigation of the pressure-to-acceleration responsivity ratio of fiber-optic mandrel hydrophones , 2001 .

[61]  P. J. Nash,et al.  High-responsivity fiber-optic flexural disk accelerometers , 2000, Journal of Lightwave Technology.

[62]  T. K. Gangopadhyay,et al.  Prospects for Fibre Bragg Gratings and Fabry-Perot Interferometers in fibre-optic vibration sensing , 2004 .

[63]  A. Kersey A Review of Recent Developments in Fiber Optic Sensor Technology , 1996 .

[64]  Byoungho Lee,et al.  Review of the present status of optical fiber sensors , 2003 .

[65]  P. J. Nash,et al.  Large-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDM , 2001 .

[66]  Clay K. Kirkendall,et al.  Overview of high performance fibre-optic sensing , 2004 .

[67]  A. Bautista,et al.  Large-scale remotely pumped and interrogated fiber-optic interferometric sensor array , 2003, IEEE Photonics Technology Letters.