Novelties of the cellulolytic system of a marine bacterium applicable to cellulosic sugar production

The saprophytic marine bacterium Saccharophagus degradans is capable of degrading whole plant material by releasing sugars through the coordinated expression of carbohydrases. The genome sequence of this bacterium indicates the presence of complex carbohydrase systems whose biochemical activities and regulation are being explored. This review summarizes the novelties of these carbohydrase systems that are most applicable to biofuel production. Multi-enzyme systems were shown to be expressed by this bacterium to process the cellulose, hemicellulose and pectic polymers of plant cell walls. The metabolism of these polymers of the bacterium and application to biomass processing are discussed.

[1]  S. Hutcheson,et al.  Hydrolytic and phosphorolytic metabolism of cellobiose by the marine aerobic bacterium Saccharophagus degradans 2-40T , 2011, Journal of Industrial Microbiology & Biotechnology.

[2]  B. Henrissat,et al.  A hierarchical classification of polysaccharide lyases for glycogenomics. , 2010, The Biochemical journal.

[3]  O. Fiehn,et al.  Evaluation of sampling and extraction methodologies for the global metabolic profiling of Saccharophagus degradans. , 2010, Analytical chemistry.

[4]  B. Henrissat,et al.  Structure of a polyisoprenoid binding domain from Saccharophagus degradans implicated in plant cell wall breakdown , 2010, FEBS letters.

[5]  O. Fiehn,et al.  Global metabolic profiling of plant cell wall polysaccharide degradation by Saccharophagus degradans , 2010, Biotechnology and bioengineering.

[6]  R. Rodríguez-Sanoja,et al.  Carbohydrate-binding domains: multiplicity of biological roles , 2010, Applied Microbiology and Biotechnology.

[7]  Weiqi Wang,et al.  Bioconversion of Kraft Paper Mill Sludges to Ethanol by SSF and SSCF , 2010, Applied biochemistry and biotechnology.

[8]  R. Lamed,et al.  Discovery and Characterization of Cadherin Domains in Saccharophagus degradans 2-40 , 2009, Journal of bacteriology.

[9]  K. Kim,et al.  Optimal production of a novel endo-acting beta-1,4-xylanase cloned from Saccharophagus degradans 2-40 into Escherichia coli BL21(DE3). , 2009, New biotechnology.

[10]  Wendy Schackwitz,et al.  Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing , 2009, Proceedings of the National Academy of Sciences.

[11]  Monika Schmoll,et al.  Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina , 2009, Biotechnology for biofuels.

[12]  C. Wyman,et al.  Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. , 2009, Bioresource technology.

[13]  Charles E Wyman,et al.  Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. , 2009, Bioresource technology.

[14]  A. Longmire,et al.  Processive Endoglucanases Mediate Degradation of Cellulose by Saccharophagus degradans , 2009, Journal of bacteriology.

[15]  Rajeev Kumar,et al.  Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments , 2009, Biotechnology and bioengineering.

[16]  Venkatesh Balan,et al.  Enzymatic digestibility and pretreatment degradation products of AFEX‐treated hardwoods (Populus nigra) , 2009, Biotechnology progress.

[17]  M. Himmel,et al.  The Effect of Lignin Removal by Alkaline Peroxide Pretreatment on the Susceptibility of Corn Stover to Purified Cellulolytic and Xylanolytic Enzymes , 2009, Applied biochemistry and biotechnology.

[18]  S. Polasky,et al.  Climate change and health costs of air emissions from biofuels and gasoline , 2009, Proceedings of the National Academy of Sciences.

[19]  Edward M. Rubin,et al.  Genomics of cellulosic biofuels , 2008, Nature.

[20]  M. Riley,et al.  Utilization of cellulosic waste from tequila bagasse and production of polyhydroxyalkanoate (PHA) bioplastics by Saccharophagus degradans , 2008, Biotechnology and bioengineering.

[21]  K. Nelson,et al.  Insights into Plant Cell Wall Degradation from the Genome Sequence of the Soil Bacterium Cellvibrio japonicus , 2008, Journal of bacteriology.

[22]  Isaac Y. Ho,et al.  Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina) , 2008, Nature Biotechnology.

[23]  B. Henrissat,et al.  Complete Genome Sequence of the Complex Carbohydrate-Degrading Marine Bacterium, Saccharophagus degradans Strain 2-40T , 2008, PLoS genetics.

[24]  L. Lynd,et al.  How biotech can transform biofuels , 2008, Nature Biotechnology.

[25]  Mark Laser,et al.  Fractionating recalcitrant lignocellulose at modest reaction conditions. , 2007, Biotechnology and bioengineering.

[26]  Charles E Wyman,et al.  What is (and is not) vital to advancing cellulosic ethanol. , 2007, Trends in biotechnology.

[27]  Jack Saddler,et al.  An evaluation of british columbian beetle-killed hybrid spruce for bioethanol production , 2007, Applied biochemistry and biotechnology.

[28]  Mark F. Davis,et al.  Porosity and its effect on the digestibility of dilute sulfuric acid pretreated corn stover. , 2007, Journal of agricultural and food chemistry.

[29]  David K. Johnson,et al.  Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production , 2007, Science.

[30]  J. Goldemberg Ethanol for a Sustainable Energy Future , 2007, Science.

[31]  D. Tilman,et al.  Carbon-Negative Biofuels from Low-Input High-Diversity Grassland Biomass , 2006, Science.

[32]  C. A. Schall,et al.  Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step , 2006, Biotechnology and bioengineering.

[33]  L. Lynd,et al.  A functionally based model for hydrolysis of cellulose by fungal cellulase , 2006, Biotechnology and bioengineering.

[34]  Charles E Wyman,et al.  BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates , 2006, Biotechnology and bioengineering.

[35]  D. Bolam,et al.  Family 6 Carbohydrate Binding Modules in β-Agarases Display Exquisite Selectivity for the Non-reducing Termini of Agarose Chains* , 2006, Journal of Biological Chemistry.

[36]  B. Henrissat,et al.  Complete Cellulase System in the Marine Bacterium Saccharophagus degradans Strain 2-40T , 2006, Journal of bacteriology.

[37]  B. Henrissat,et al.  Genomic and Proteomic Analyses of the Agarolytic System Expressed by Saccharophagus degradans 2-40 , 2006, Applied and Environmental Microbiology.

[38]  Michael E Himmel,et al.  The maize primary cell wall microfibril: a new model derived from direct visualization. , 2006, Journal of agricultural and food chemistry.

[39]  M. Himmel,et al.  Computer simulation studies of microcrystalline cellulose Iβ , 2006 .

[40]  J. Ståhlberg,et al.  Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes. , 2005, Progress in biophysics and molecular biology.

[41]  R. Weiner,et al.  Saccharophagus degradans gen. nov., sp. nov., a versatile marine degrader of complex polysaccharides. , 2005, International journal of systematic and evolutionary microbiology.

[42]  Warren Mabee,et al.  Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. , 2005, Biotechnology and bioengineering.

[43]  C. Wyman,et al.  Features of promising technologies for pretreatment of lignocellulosic biomass. , 2005, Bioresource technology.

[44]  L. Lynd,et al.  Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems , 2004, Biotechnology and bioengineering.

[45]  Stephen R. Decker,et al.  Hydrolysis of Cellulose and Hemicellulose , 2004 .

[46]  L. Hildén,et al.  Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity , 2004, Biotechnology Letters.

[47]  D. Bolam,et al.  Carbohydrate-binding modules: fine-tuning polysaccharide recognition. , 2004, The Biochemical journal.

[48]  B. Henrissat,et al.  The Family 6 Carbohydrate Binding Module CmCBM6-2 Contains Two Ligand-binding Sites with Distinct Specificities*[boxs] , 2004, Journal of Biological Chemistry.

[49]  R. Weiner,et al.  Identification and analysis of polyserine linker domains in prokaryotic proteins with emphasis on the marine bacterium Microbulbifer degradans , 2004, Protein science : a publication of the Protein Society.

[50]  C. Wyman,et al.  Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose , 2004, Biotechnology and bioengineering.

[51]  Paul Gatenholm,et al.  Hemicelluloses: Science and Technology , 2003 .

[52]  R. Weiner,et al.  Genomic Analysis and Initial Characterization of the Chitinolytic System of Microbulbifer degradans Strain 2-40 , 2003, Journal of bacteriology.

[53]  I. S. Pretorius,et al.  Microbial Cellulose Utilization: Fundamentals and Biotechnology , 2002, Microbiology and Molecular Biology Reviews.

[54]  Ye Sun,et al.  Hydrolysis of lignocellulosic materials for ethanol production: a review. , 2002, Bioresource technology.

[55]  P. Shewry Biochemistry & Molecular Biology of Plants. B.B. Buchanan, W. Gruissem and R.L. Jones (eds), 2000 , 2001, Plant Growth Regulation.

[56]  D. Bishop,et al.  Cellulase finishing of woven, cotton fabrics in jet and winch machines. , 2001, Journal of biotechnology.

[57]  J. M. González,et al.  Phylogenetic characterization of marine bacterium strain 2-40, a degrader of complex polysaccharides. , 2000, International journal of systematic and evolutionary microbiology.

[58]  M. Tenkanen,et al.  Dynamic Interaction of Trichoderma reesei Cellobiohydrolases Cel6A and Cel7A and Cellulose at Equilibrium and during Hydrolysis , 1999, Applied and Environmental Microbiology.

[59]  R. Weiner,et al.  Expression of multiple complex polysaccharide-degrading enzyme systems by marine bacterium strain 2-40 , 1999, Journal of Industrial Microbiology and Biotechnology.

[60]  M. Ruth,et al.  Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis Current and Futuristic Scenarios , 1999 .

[61]  V. Zverlov,et al.  Multidomain Structure and Cellulosomal Localization of the Clostridium thermocellum Cellobiohydrolase CbhA , 1998, Journal of bacteriology.

[62]  John N. Saddler,et al.  The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods , 1998 .

[63]  A. C. O'sullivan Cellulose: the structure slowly unravels , 1997, Cellulose.

[64]  Richard A. Dixon,et al.  Lignin Impact on Fiber Degradation: Increased Enzymatic Digestibility of Genetically Engineered Tobacco (Nicotiana tabacum) Stems Reduced in Lignin Content , 1997 .

[65]  N. Carpita STRUCTURE AND BIOGENESIS OF THE CELL WALLS OF GRASSES. , 1996, Annual review of plant physiology and plant molecular biology.

[66]  L. Lynd,et al.  Likely features and costs of mature biomass ethanol technology , 1996 .

[67]  R K Ham,et al.  Effect of lignin on the anaerobic decomposition of cellulose as determined through the use of a biochemical methane potential method. , 1995, Environmental science & technology.

[68]  M. Ladisch,et al.  Cellulose pretreatments of lignocellulosic substrates. , 1994, Enzyme and microbial technology.

[69]  L. Walker,et al.  Activity studies of eight purified cellulases: Specificity, synergism, and binding domain effects , 1993, Biotechnology and bioengineering.

[70]  L. Lynd,et al.  Fuel Ethanol from Cellulosic Biomass , 1991, Science.

[71]  I. Marx,et al.  Isolation of a New Polysaccharide-Digesting Bacterium from a Salt Marsh , 1988, Applied and environmental microbiology.

[72]  T. K. Ghose,et al.  Measurement of hemicellulase activities: Part I Xylanases , 1987 .

[73]  Roger M. Rowell,et al.  The Chemistry of solid wood , 1984 .

[74]  I. Morrison The effect of physical and chemical treatments on the degradation of wheat and barley straws by rumen liquor‐pepsin and pepsin‐cellulase systems , 1983 .

[75]  R. Dekker Bioconversion of hemicellulose: Aspects of hemicellulase production by Trichoderma reesei QM 9414 and enzymic saccharification of hemicellulose , 1983, Biotechnology and bioengineering.

[76]  M. M. Gharpuray,et al.  Structural modification of lignocellulosics by pretreatments to enhance enzymatic hydrolysis , 1983, Biotechnology and bioengineering.

[77]  B. Gaillard Comparison of the hemicelluloses from plants belonging to two different plant families , 1965 .

[78]  R. R. Johnson,et al.  Digestibility of Forage Hemicellulose and Pectin by Rumen Bacteria in Vitro and the Effect of Lignification Thereon , 1962 .

[79]  Joseph A. Rollin,et al.  Advances in Cellulose Solvent- and Organic Solvent-Based Lignocellulose Fractionation (COSLIF) , 2010 .

[80]  Y. Zhuang,et al.  Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments. , 2009, Bioresource technology.

[81]  C. Wyman,et al.  Pretreatment: the key to unlocking low‐cost cellulosic ethanol , 2008 .

[82]  W. Mabee,et al.  Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? , 2007, Advances in biochemical engineering/biotechnology.

[83]  David K. Johnson,et al.  Cellulase Accessibility of Dilute-Acid Pretreated Corn Stover , 2005 .

[84]  Michael Knauf,et al.  Lignocellulosic biomass processing: a perspective. , 2004 .

[85]  Y. Shoham,et al.  Microbial hemicellulases. , 2003, Current opinion in microbiology.

[86]  B. Saha,et al.  Hemicellulose bioconversion , 2003, Journal of Industrial Microbiology and Biotechnology.

[87]  Wilhelm Gruissem,et al.  Biochemistry & Molecular Biology of Plants , 2002 .

[88]  J. O. Baker,et al.  Fingerprinting Trichoderma reesei hydrolases in a commercial cellulase preparation , 2001, Applied biochemistry and biotechnology.

[89]  M. Holtzapple,et al.  Fundamental factors affecting biomass enzymatic reactivity , 2000, Applied biochemistry and biotechnology.

[90]  J. O. Baker,et al.  Hydrolysis of cellulose using ternary mixtures of purified cellulases. , 1998, Applied biochemistry and biotechnology.

[91]  H. Gilbert,et al.  Structure and function analysis of Pseudomonas plant cell wall hydrolases. , 1998, Progress in nucleic acid research and molecular biology.

[92]  Severian Dumitriu,et al.  Polysaccharides : structural diversity and functional versatility , 1998 .

[93]  Mark T. Holtzapple,et al.  Lime pretreatment of switchgrass , 1997, Applied biochemistry and biotechnology.

[94]  R. Warren Microbial hydrolysis of polysaccharides. , 1996, Annual review of microbiology.

[95]  N. Gilkes,et al.  Cellulose hydrolysis by bacteria and fungi. , 1995, Advances in microbial physiology.

[96]  T. Jeffries Biodegradation of lignin and hemicelluloses , 1994 .

[97]  B. Henrissat,et al.  Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. , 1991, Microbiological reviews.

[98]  P. Oefner,et al.  Analytical determination of organic acids formed during hydrothermal and organosolv degradation of lignocellulosic biomass , 1988 .

[99]  R. Pettersen,et al.  The chemical composition of wood , 1984 .

[100]  G. N. Richards,et al.  Hemicellulases: their occurrence, purification, properties, and mode of action. , 1976, Advances in carbohydrate chemistry and biochemistry.

[101]  E. Reese,et al.  History of the cellulase program at the U.S. army Natick Development Center. , 1976, Biotechnology and bioengineering symposium.

[102]  Reese Et,et al.  History of the cellulase program at the U.S. army Natick Development Center. , 1976 .