Sequential Empirical Bayes method for filtering dynamic spatiotemporal processes

We consider online prediction of a latent dynamic spatiotemporal process and estimation of the associated model parameters based on noisy data. The problem is motivated by the analysis of spatial data arriving in real-time and the current parameter estimates and predictions are updated using the new data at a fixed computational cost. Estimation and prediction is performed within an empirical Bayes framework with the aid of Markov chain Monte Carlo samples. Samples for the latent spatial field are generated using a sampling importance resampling algorithm with a skewed-normal proposal and for the temporal parameters using Gibbs sampling with their full conditionals written in terms of sufficient quantities which are updated online. The spatial range parameter is estimated by a novel online implementation of an empirical Bayes method, called herein sequential empirical Bayes method. A simulation study shows that our method gives similar results as an offline Bayesian method. We also find that the skewed-normal proposal improves over the traditional Gaussian proposal. The application of our method is demonstrated for online monitoring of radiation after the Fukushima nuclear accident.

[1]  G. Kitagawa Theory and Methods , 1998 .

[2]  G. Shaddick,et al.  Spatio-Temporal Methods in Environmental Epidemiology , 2015 .

[3]  Ioannis D. Schizas,et al.  Decentralized sparsity-based multi-source association and state tracking , 2016, Signal Process..

[4]  H. Rue,et al.  Improving the INLA approach for approximate Bayesian inference for latent Gaussian models , 2015, 1503.07307.

[5]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[6]  A. Azzalini,et al.  Statistical applications of the multivariate skew normal distribution , 2009, 0911.2093.

[7]  H. Rue,et al.  Spatio-temporal modeling of particulate matter concentration through the SPDE approach , 2012, AStA Advances in Statistical Analysis.

[8]  J. Berger,et al.  Objective Bayesian Analysis of Spatially Correlated Data , 2001 .

[9]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[10]  Hao Zhang On Estimation and Prediction for Spatial Generalized Linear Mixed Models , 2002, Biometrics.

[11]  Vasileios Maroulas,et al.  Tracking rapid intracellular movements: A Bayesian random set approach , 2015, 1509.04841.

[12]  Rasmus Waagepetersen,et al.  Analysis of spatial data using generalized linear mixed models and Langevin-type Markov chain Monte Carlo , 2000 .

[13]  J. Andrew Royle,et al.  Dynamic design of ecological monitoring networks for non‐Gaussian spatio‐temporal data , 2005 .

[14]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[15]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[16]  Peter J. Diggle,et al.  Point process methodology for on‐line spatio‐temporal disease surveillance , 2005 .

[17]  Nicholas G. Polson,et al.  Particle Learning and Smoothing , 2010, 1011.1098.

[18]  Zhengyuan Zhu,et al.  Efficient estimation and prediction for the Bayesian binary spatial model with flexible link functions , 2016, Biometrics.

[19]  Gareth O. Roberts,et al.  Robust Markov chain Monte Carlo Methods for Spatial Generalized Linear Mixed Models , 2006 .

[20]  Jan M. Maciejowski,et al.  On Particle Methods for Parameter Estimation in General State-Space Models , 2015 .

[21]  Peter J. Diggle,et al.  An Introduction to Model-Based Geostatistics , 2003 .

[22]  Hani Doss,et al.  ESTIMATION OF LARGE FAMILIES OF BAYES FACTORS FROM MARKOV CHAIN OUTPUT , 2010 .

[23]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[24]  Geir Storvik,et al.  Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..

[25]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[26]  J. Andrew Royle,et al.  Space: Time Dynamic Design of Environmental Monitoring Networks , 1999 .

[27]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[28]  P. Fearnhead Markov chain Monte Carlo, Sufficient Statistics, and Particle Filters , 2002 .

[29]  G. Kitagawa A self-organizing state-space model , 1998 .

[30]  A. Gelfand,et al.  Spatio-temporal modeling for real-time ozone forecasting. , 2013, Spatial statistics.

[31]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[32]  Computational approaches for empirical Bayes methods and Bayesian sensitivity analysis , 2011, 1202.5160.

[33]  Arnaud Doucet,et al.  On Particle Methods for Parameter Estimation in State-Space Models , 2014, 1412.8695.

[34]  Ioannis D. Schizas,et al.  Distributed spatio-temporal association and tracking of multiple targets using multiple sensors , 2015, IEEE Transactions on Aerospace and Electronic Systems.