Sequential Empirical Bayes method for filtering dynamic spatiotemporal processes
暂无分享,去创建一个
[1] G. Kitagawa. Theory and Methods , 1998 .
[2] G. Shaddick,et al. Spatio-Temporal Methods in Environmental Epidemiology , 2015 .
[3] Ioannis D. Schizas,et al. Decentralized sparsity-based multi-source association and state tracking , 2016, Signal Process..
[4] H. Rue,et al. Improving the INLA approach for approximate Bayesian inference for latent Gaussian models , 2015, 1503.07307.
[5] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[6] A. Azzalini,et al. Statistical applications of the multivariate skew normal distribution , 2009, 0911.2093.
[7] H. Rue,et al. Spatio-temporal modeling of particulate matter concentration through the SPDE approach , 2012, AStA Advances in Statistical Analysis.
[8] J. Berger,et al. Objective Bayesian Analysis of Spatially Correlated Data , 2001 .
[9] Mike Rees,et al. 5. Statistics for Spatial Data , 1993 .
[10] Hao Zhang. On Estimation and Prediction for Spatial Generalized Linear Mixed Models , 2002, Biometrics.
[11] Vasileios Maroulas,et al. Tracking rapid intracellular movements: A Bayesian random set approach , 2015, 1509.04841.
[12] Rasmus Waagepetersen,et al. Analysis of spatial data using generalized linear mixed models and Langevin-type Markov chain Monte Carlo , 2000 .
[13] J. Andrew Royle,et al. Dynamic design of ecological monitoring networks for non‐Gaussian spatio‐temporal data , 2005 .
[14] A. Doucet,et al. Particle Markov chain Monte Carlo methods , 2010 .
[15] M. Pitt,et al. Filtering via Simulation: Auxiliary Particle Filters , 1999 .
[16] Peter J. Diggle,et al. Point process methodology for on‐line spatio‐temporal disease surveillance , 2005 .
[17] Nicholas G. Polson,et al. Particle Learning and Smoothing , 2010, 1011.1098.
[18] Zhengyuan Zhu,et al. Efficient estimation and prediction for the Bayesian binary spatial model with flexible link functions , 2016, Biometrics.
[19] Gareth O. Roberts,et al. Robust Markov chain Monte Carlo Methods for Spatial Generalized Linear Mixed Models , 2006 .
[20] Jan M. Maciejowski,et al. On Particle Methods for Parameter Estimation in General State-Space Models , 2015 .
[21] Peter J. Diggle,et al. An Introduction to Model-Based Geostatistics , 2003 .
[22] Hani Doss,et al. ESTIMATION OF LARGE FAMILIES OF BAYES FACTORS FROM MARKOV CHAIN OUTPUT , 2010 .
[23] Robert Haining,et al. Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .
[24] Geir Storvik,et al. Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..
[25] H. Rue,et al. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .
[26] J. Andrew Royle,et al. Space: Time Dynamic Design of Environmental Monitoring Networks , 1999 .
[27] W. Wong,et al. The calculation of posterior distributions by data augmentation , 1987 .
[28] P. Fearnhead. Markov chain Monte Carlo, Sufficient Statistics, and Particle Filters , 2002 .
[29] G. Kitagawa. A self-organizing state-space model , 1998 .
[30] A. Gelfand,et al. Spatio-temporal modeling for real-time ozone forecasting. , 2013, Spatial statistics.
[31] Michael A. West,et al. Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.
[32] Computational approaches for empirical Bayes methods and Bayesian sensitivity analysis , 2011, 1202.5160.
[33] Arnaud Doucet,et al. On Particle Methods for Parameter Estimation in State-Space Models , 2014, 1412.8695.
[34] Ioannis D. Schizas,et al. Distributed spatio-temporal association and tracking of multiple targets using multiple sensors , 2015, IEEE Transactions on Aerospace and Electronic Systems.