Porous interpenetrated zirconium-organic frameworks (PIZOFs): a chemically versatile family of metal-organic frameworks.

We present the synthesis and characterization of porous interpenetrated zirconium-organic frameworks (PIZOFs), a new family of metal-organic frameworks obtained from ZrCl(4) and the rodlike dicarboxylic acids HO(2)C[PE-P(R(1),R(2))-EP]CO(2) H that consist of alternating phenylene (P) and ethynylene (E) units. The substituents R(1),R(2) were broadly varied (alkyl, O-alkyl, oligo(ethylene glycol)), including postsynthetically addressable substituents (amino, alkyne, furan). The PIZOF structure is highly tolerant towards the variation of R(1) and R(2). This together with the modular synthesis of the diacids offers a facile tuning of the chemical environment within the pores. The PIZOF structure was solved from single-crystal X-ray diffraction analysis. The PIZOFs are stable under ambient conditions. PIZOF-2, the PIZOF prepared from HO(2)C[PE-P(OMe,OMe)-EP]CO(2)H, served as a prototype to determine thermal stability and porosity. It is stable up to 325 °C in air as determined by using thermogravimetry and powder X-ray diffraction. Argon sorption isotherms on PIZOF-2 revealed a Brunauer-Emmett-Teller (BET) surface area of 1250 m(2) g(-1) and a total pore volume of 0.68 cm(3) g(-1).

[1]  Seth M Cohen,et al.  Isoreticular synthesis and modification of frameworks with the UiO-66 topology. , 2010, Chemical communications.

[2]  Susumu Kitagawa,et al.  Controlled Multiscale Synthesis of Porous Coordination Polymer in Nano/Micro Regimes , 2010 .

[3]  B. Rieger,et al.  Heterogeneous catalytic oxidation by MFU-1: a cobalt(II)-containing metal-organic framework. , 2009, Angewandte Chemie.

[4]  M. Allendorf,et al.  Assessing the purity of metal-organic frameworks using photoluminescence: MOF-5, ZnO quantum dots, and framework decomposition. , 2010, Journal of the American Chemical Society.

[5]  A. Matzger,et al.  Microporous coordination polymers as selective sorbents for liquid chromatography. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[6]  Krista S. Walton,et al.  Strategies for Characterization of Large-Pore Metal-Organic Frameworks by Combined Experimental and Computational Methods , 2009 .

[7]  Chengdu Liang,et al.  A microporous metal-organic framework for gas-chromatographic separation of alkanes. , 2006, Angewandte Chemie.

[8]  J. F. Stoddart,et al.  Docking in Metal-Organic Frameworks , 2009, Science.

[9]  B. Rieger,et al.  Heterogene Oxidationskatalyse durch MFU‐1, eine Cobalt(II)‐haltige Metall‐organische Gerüststruktur , 2009 .

[10]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[11]  Alistair C. McKinlay,et al.  Metal organic frameworks as NO delivery materials for biological applications , 2010 .

[12]  H. Zimmermann,et al.  Flexibility of shape-persistent molecular building blocks composed of p-phenylene and ethynylene units. , 2010, Journal of the American Chemical Society.

[13]  H. Zimmermann,et al.  How flexible are poly(para-phenyleneethynylene)s? , 2006, Angewandte Chemie.

[14]  M. Allendorf,et al.  Influence of connectivity and porosity on ligand-based luminescence in zinc metal-organic frameworks. , 2007, Journal of the American Chemical Society.

[15]  A. Godt,et al.  One-dimensional Zn(II) oligo(phenyleneethynylene)dicarboxylate coordination polymers: Synthesis, crystal structures, thermal and photoluminescent properties , 2009 .

[16]  E. Lifshitz,et al.  Hybrid composites of monodisperse pi-conjugated rodlike organic compounds and semiconductor quantum particles. , 2002, Chemistry.

[17]  M. Doublet,et al.  Design of Electrode Materials for Lithium-Ion Batteries: The Example of Metal−Organic Frameworks , 2010 .

[18]  Anthony L. Spek,et al.  Journal of , 1993 .

[19]  Peter Behrens,et al.  Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals. , 2011, Chemistry.

[20]  Susumu Kitagawa,et al.  Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. , 2009, Angewandte Chemie.

[21]  Gérard Férey,et al.  Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. , 2010, Nature materials.

[22]  Omar M Yaghi,et al.  Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[23]  Bartolomeo Civalleri,et al.  Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory , 2011 .

[24]  J. F. Stoddart,et al.  Rigid-strut-containing crown ethers and [2]catenanes for incorporation into metal-organic frameworks. , 2009, Chemistry.

[25]  Christian Serre,et al.  Biodegradable therapeutic MOFs for the delivery of bioactive molecules. , 2010, Chemical communications.

[26]  K. Lillerud,et al.  Designing Heterogeneous Catalysts by Incorporating Enzyme-Like Functionalities into MOFs , 2010 .

[27]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[28]  K. Lillerud,et al.  Post-synthetic modification of the metal–organic framework compound UiO-66 , 2010 .