A mathematical model for the motion analysis of embedded straight microcantilevers under a pressure-driven flow
暂无分享,去创建一个
Philip A. Wilson | K. Mayora | J. M. Ruano-López | Aitor Ezkerra | P. Wilson | J. Ruano-Lopez | K. Mayora | A. Ezkerra
[1] Eric Bourillot,et al. Detection of gas trace of hydrofluoric acid using microcantilever , 2004 .
[2] J. S. Vrentas,et al. Effect of axial diffusion of vorticity on flow development in circular conduits: Part I. Numerical solutions , 1966 .
[3] S. Radhakrishnan,et al. Scalable microbeam flowsensors with electronic readout , 2005, Journal of Microelectromechanical Systems.
[4] Xiangchun Xuan,et al. Particle motions in low-Reynolds number pressure-driven flows through converging–diverging microchannels , 2005 .
[5] L. Milne‐Thomson. Theorem of Schwarz and Christoffel , 1968 .
[6] P. Silberzan,et al. Microfluidics for biotechnology , 2005 .
[7] N. Sylvester,et al. Laminar flow in the entrance region of a cylindrical tube: Part I. Newtonian fluids , 1970 .
[8] David F. Moore,et al. Micromechanical testing of SU-8 cantilevers , 2005 .
[9] Deformation control of microbridges for flow sensors , 1997 .
[10] J. Voldman,et al. An integrated liquid mixer/valve , 2000, Journal of Microelectromechanical Systems.
[11] K. Mayora,et al. Fabrication of SU-8 free-standing structures embedded in microchannels for microfluidic control , 2007 .
[12] J. S. Vrentas,et al. Flow of a newtonian fluid through a sudden contraction , 1973 .