Regular embeddings of cycles with multiple edges revisited

Regular embeddings of cycles with multiple edges have been reappearing in the literature for quite some time, both in and outside topological graph theory. The present paper aims to draw a complete picture of these maps by providing a detailed description, classification, and enumeration of regular embeddings of cycles with multiple edges on both orientable and non-orientable surfaces. Most of the results have been known in one form or another, but here they are presented from a unique viewpoint based on finite group theory. Our approach brings additional information about both the maps and their automorphism groups, and also gives extra insight into their relationships.

[1]  C. Maclachlan,et al.  A Bound for the Number of Automorphisms of a Compact Riemann Surface , 1969 .

[2]  H. Coxeter,et al.  Generators and relations for discrete groups , 1957 .

[3]  Jun-Yang Zhang,et al.  On the orientable regular embeddings of complete multipartite graphs , 2012, Eur. J. Comb..

[4]  R. Nedela,et al.  Classification of regular maps of negative prime Euler characteristic , 2004 .

[5]  Jozef Sirán Non-orientable Regular Maps of a Given Type over Linear Fractional Groups , 2010, Graphs Comb..

[6]  G. Jones,et al.  Theory of Maps on Orientable Surfaces , 1978 .

[7]  Stephen E. Wilson Bicontactual regular maps. , 1985 .

[8]  Cai Heng Li,et al.  Regular maps whose groups do not act faithfully on vertices, edges, or faces , 2005, Eur. J. Comb..

[9]  R. D. Accola,et al.  On the number of automorphisms of a closed Riemann surface , 1968 .

[10]  Young Soo Kwon,et al.  Classification of regular embeddings of n-dimensional cubes , 2011 .

[11]  Cai Heng Li,et al.  Möbius regular maps , 2007, J. Comb. Theory B.

[12]  Martin Skoviera,et al.  Regular Maps from Voltage Assignments and Exponent Groups , 1997, Eur. J. Comb..

[13]  Martin Skoviera,et al.  Regular maps with nilpotent automorphism groups , 2012, Eur. J. Comb..

[14]  H. Zassenhaus The theory of groups , 1949 .

[15]  Gareth A. Jones,et al.  Regular embeddings of complete bipartite graphs: classification and enumeration , 2009, 0911.4340.

[16]  Mircea V. Diudea,et al.  Operations on Maps , 2007 .

[17]  Young Soo Kwon New regular embeddings of n-cubes Q n , 2004 .

[18]  H. R. Brahana Regular Maps and Their Groups , 1927 .

[19]  Steve Wilson,et al.  Cantankerous maps and rotary embeddings of Kn , 1989, J. Comb. Theory, Ser. B.

[20]  Gareth A. Jones,et al.  Regular orientable imbeddings of complete graphs , 1985, J. Comb. Theory B.

[21]  Young Soo Kwon New regular embeddings of n‐cubes Qn , 2004, J. Graph Theory.

[22]  Jin Ho Kwak,et al.  Regular embeddings of complete multipartite graphs , 2005, Eur. J. Comb..

[23]  Gareth A. Jones,et al.  Operations on maps, and outer automorphisms , 1983, J. Comb. Theory, Ser. B.

[24]  Roman Nedela,et al.  Exponents of orientable maps , 1997 .

[25]  Jozef Širáň,et al.  Characterisation of Graphs which Underlie Regular Maps on Closed Surfaces , 1999 .

[26]  Ghidewon Abay-Asmerom Imbeddings of the tensor product of graphs where the second factor is a complete graph , 1998, Discret. Math..

[27]  Martin Skoviera,et al.  Regular Embeddings of Canonical Double Coverings of Graphs , 1996, J. Comb. Theory, Ser. B.

[28]  Young Soo Kwon,et al.  Non-existence of nonorientable regular embeddings of n-dimensional cubes , 2007, Discret. Math..