Error estimation and anisotropic mesh refinement for 3d laminar aerodynamic flow simulations

This article considers a posteriori error estimation and anisotropic mesh refinement for three-dimensional laminar aerodynamic flow simulations. The optimal order symmetric interior penalty discontinuous Galerkin discretization which has previously been developed for the compressible Navier-Stokes equations in two dimensions is extended to three dimensions. Symmetry boundary conditions are given which allow to discretize and compute symmetric flows on the half model resulting in exactly the same flow solutions as if computed on the full model. Using duality arguments, an error estimation is derived for estimating the discretization error with respect to the aerodynamic force coefficients. Furthermore, residual-based indicators as well as adjoint-based indicators for goal-oriented refinement are derived. These refinement indicators are combined with anisotropy indicators which are particularly suited to the discontinuous Galerkin (DG) discretization. Two different approaches based on either a heuristic criterion or an anisotropic extension of the adjoint-based error estimation are presented. The performance of the proposed discretization, error estimation and adaptive mesh refinement algorithms is demonstrated for 3d aerodynamic flows.

[1]  David L. Darmofal,et al.  An adaptive simplex cut-cell method for discontinuous Galerkin discretizations of the Navier-Stokes equations , 2007 .

[2]  Ralf Hartmann,et al.  Anisotropic mesh refinement for discontinuous Galerkin methods in two‐dimensional aerodynamic flow simulations , 2008 .

[3]  D. Venditti,et al.  Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .

[4]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[5]  Norbert Kroll,et al.  ADIGMA: A European Project on the Development of Adaptive Higher Order Variational Methods for Aerospace Applications , 2010 .

[6]  Eric J. Nielsen,et al.  Validation of 3D Adjoint Based Error Estimation and Mesh Adaptation for Sonic Boom Prediction , 2006 .

[7]  Paul Houston,et al.  Adaptivity and A Posteriori Error Estimation For DG Methods on Anisotropic Meshes , 2006 .

[8]  L. Formaggia,et al.  Anisotropic mesh adaptation in computational fluid dynamics: application to the advection-diffusion-reaction and the Stokes problems , 2004 .

[9]  Ralf Hartmann,et al.  Symmetric Interior Penalty DG Methods for the Compressible Navier-Stokes Equations II: Goal--Oriented A Posteriori Error Estimation , 2005 .

[10]  Leszek Demkowicz,et al.  A fully automatic hp-adaptivity for elliptic PDEs in three dimensions , 2007 .

[11]  Jaap J. W. van der Vegt,et al.  Space-Time Discontinuous Galerkin Method for the Compressible Navier-Stokes , 2006 .

[12]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[13]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[14]  Weizhang Huang,et al.  Metric tensors for anisotropic mesh generation , 2005 .

[15]  M. Wheeler,et al.  Anisotropic and dynamic mesh adaptation for discontinuous Galerkin methods applied to reactive transport , 2006 .

[16]  R. Hartmann,et al.  Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .

[17]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[18]  Endre Süli,et al.  The importance of adjoint consistency in the approximation of linear functionals using the discontinuous Galerkin finite element method , 2004 .

[19]  Charles A. Taylor,et al.  Efficient anisotropic adaptive discretization of the cardiovascular system , 2006 .

[20]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[21]  Ralf Hartmann,et al.  An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier-Stokes equations , 2008, J. Comput. Phys..

[22]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[23]  Ralf Hartmann,et al.  Adjoint Consistency Analysis of Discontinuous Galerkin Discretizations , 2007, SIAM J. Numer. Anal..

[24]  Thomas Richter,et al.  A posteriori error estimation and anisotropy detection with the dual‐weighted residual method , 2010 .

[25]  Frédéric Alauzet,et al.  On the use of anisotropic a posteriori error estimators for the adaptative solution of 3D inviscid compressible flows , 2009 .

[26]  Pascal Frey,et al.  Anisotropic mesh adaptation for CFD computations , 2005 .

[27]  Ralf Hartmann,et al.  Multitarget Error Estimation and Adaptivity in Aerodynamic Flow Simulations , 2008, SIAM J. Sci. Comput..

[28]  Frédéric Alauzet,et al.  Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations , 2010, J. Comput. Phys..

[29]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[30]  David L. Darmofal,et al.  A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations , 2007, J. Comput. Phys..