Error estimation and anisotropic mesh refinement for 3d laminar aerodynamic flow simulations
暂无分享,去创建一个
[1] David L. Darmofal,et al. An adaptive simplex cut-cell method for discontinuous Galerkin discretizations of the Navier-Stokes equations , 2007 .
[2] Ralf Hartmann,et al. Anisotropic mesh refinement for discontinuous Galerkin methods in two‐dimensional aerodynamic flow simulations , 2008 .
[3] D. Venditti,et al. Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .
[4] W. Bangerth,et al. deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.
[5] Norbert Kroll,et al. ADIGMA: A European Project on the Development of Adaptive Higher Order Variational Methods for Aerospace Applications , 2010 .
[6] Eric J. Nielsen,et al. Validation of 3D Adjoint Based Error Estimation and Mesh Adaptation for Sonic Boom Prediction , 2006 .
[7] Paul Houston,et al. Adaptivity and A Posteriori Error Estimation For DG Methods on Anisotropic Meshes , 2006 .
[8] L. Formaggia,et al. Anisotropic mesh adaptation in computational fluid dynamics: application to the advection-diffusion-reaction and the Stokes problems , 2004 .
[9] Ralf Hartmann,et al. Symmetric Interior Penalty DG Methods for the Compressible Navier-Stokes Equations II: Goal--Oriented A Posteriori Error Estimation , 2005 .
[10] Leszek Demkowicz,et al. A fully automatic hp-adaptivity for elliptic PDEs in three dimensions , 2007 .
[11] Jaap J. W. van der Vegt,et al. Space-Time Discontinuous Galerkin Method for the Compressible Navier-Stokes , 2006 .
[12] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[13] G. Karniadakis,et al. Spectral/hp Element Methods for CFD , 1999 .
[14] Weizhang Huang,et al. Metric tensors for anisotropic mesh generation , 2005 .
[15] M. Wheeler,et al. Anisotropic and dynamic mesh adaptation for discontinuous Galerkin methods applied to reactive transport , 2006 .
[16] R. Hartmann,et al. Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .
[17] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[18] Endre Süli,et al. The importance of adjoint consistency in the approximation of linear functionals using the discontinuous Galerkin finite element method , 2004 .
[19] Charles A. Taylor,et al. Efficient anisotropic adaptive discretization of the cardiovascular system , 2006 .
[20] M. Giles,et al. Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.
[21] Ralf Hartmann,et al. An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier-Stokes equations , 2008, J. Comput. Phys..
[22] Ivo Babuška,et al. The h-p version of the finite element method , 1986 .
[23] Ralf Hartmann,et al. Adjoint Consistency Analysis of Discontinuous Galerkin Discretizations , 2007, SIAM J. Numer. Anal..
[24] Thomas Richter,et al. A posteriori error estimation and anisotropy detection with the dual‐weighted residual method , 2010 .
[25] Frédéric Alauzet,et al. On the use of anisotropic a posteriori error estimators for the adaptative solution of 3D inviscid compressible flows , 2009 .
[26] Pascal Frey,et al. Anisotropic mesh adaptation for CFD computations , 2005 .
[27] Ralf Hartmann,et al. Multitarget Error Estimation and Adaptivity in Aerodynamic Flow Simulations , 2008, SIAM J. Sci. Comput..
[28] Frédéric Alauzet,et al. Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations , 2010, J. Comput. Phys..
[29] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[30] David L. Darmofal,et al. A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations , 2007, J. Comput. Phys..