Fuzzy quantum logic I

The paper gives a review of the application of fuzzy set ideas in quantum logics. After a brief introduction to the fuzzy set theory, the historical development of the main attempts to utilize fuzzy set ideas in quantum logics are presented. Results of investigations of all major researchers (except the Italian group discussed elsewhere), who work or worked in the field, are discussed.

[1]  B. Riecan,et al.  FUZZY QUANTUM MODELS , 1991 .

[2]  A. Dvurecenskij,et al.  On joint distribution of observables for F -quantum spaces , 1991 .

[3]  Paul Busch,et al.  Indeterminacy relations and simultaneous measurements in quantum theory , 1985 .

[4]  E. William Chapin Set-valued set theory. II , 1975, Notre Dame J. Formal Log..

[5]  P. Busch,et al.  Unsharp reality and joint measurements for spin observables. , 1986, Physical review. D, Particles and fields.

[6]  R. Giles A non-classical logic for physics , 1974 .

[7]  E. Prugovec̆ki,et al.  Measurement in quantum mechanics as a stochastic process on spaces of fuzzy events , 1975 .

[8]  C. Hooker,et al.  Formal Languages and the Foundations of Physics , 1978 .

[9]  B. Schweizer,et al.  Statistical metric spaces. , 1960 .

[10]  Krzysztof Piasecki Probability of fuzzy events defined as denumerable additivity measure , 1985 .

[11]  V. Varadarajan Geometry of quantum theory , 1968 .

[12]  Robin Giles,et al.  Semantics for fuzzy reasoning , 1982 .

[13]  Radko Mesiar h-Fuzzy quantum logics , 1994 .

[14]  M. Maczynski Functional properties of quantum logics , 1974 .

[15]  E. Prugovec̆ki Stochastic Quantum Mechanics And Quantum Spacetime , 1984 .

[16]  Jarosław Pykacz,et al.  Fuzzy set ideas in quantum logics , 1992 .

[17]  Orrin Frink,et al.  New Algebras of Logic , 1938 .

[18]  M. Maczynski The orthogonality postulate in axiomatic quantum mechanics , 1973 .

[19]  R. Giles Łukasiewicz logic and fuzzy set theory , 1976 .

[20]  Jarosław Pykacz Affine Maczyński logics on compact convex sets of states , 1983 .

[21]  M. J. Frank On the simultaneous associativity ofF(x, y) andx+y−F(x, y) , 1978 .

[22]  Jarosław Pykacz Quantum Logics and Soft Fuzzy Probability Spaces , 1992 .

[23]  A. Dvurecenskij,et al.  Fuzzy quantum spaces and compatibility , 1988 .

[24]  Fumitomo Maeda,et al.  Theory of symmetric lattices , 1970 .

[25]  W. Guz Fuzzy σ algebras of physics , 1985 .

[26]  W. Guz Stochastic phase spaces, fuzzy sets, and statistical metric spaces , 1984 .

[27]  P. Busch Momentum conservation forbids sharp localisation , 1985 .

[28]  E. Prugovec̆ki,et al.  Fuzzy sets in the theory of measurement of incompatible observables , 1974 .

[29]  K. Menger Statistical Metrics. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[30]  M. J. Frank On the simultaneous associativity ofF(x,y) andx +y -F(x,y) , 1979 .

[31]  Jarosław Pykacz,et al.  Fuzzy quantum logics and infinite-valued Łukasiewicz logic , 1994 .

[32]  Patrick Suppes,et al.  The Probabilistic Argument for a Non-Classical Logic of Quantum Mechanics , 1966, Philosophy of Science.

[33]  J. Neumann,et al.  The Logic of Quantum Mechanics , 1936 .

[34]  Vilém Novák An attempt at gödel-bernays-like axiomatization of fuzzy sets , 1980 .

[35]  R. Morrow,et al.  Foundations of Quantum Mechanics , 1968 .