A Macroscopic Model for a System of Swarming Agents Using Curvature Control

In this paper, we study the macroscopic limit of a new model of collective displacement. The model, called PTWA, is a combination of the Vicsek alignment model (Vicsek et al. in Phys. Rev. Lett. 75(6):1226–1229, 1995) and the Persistent Turning Walker (PTW) model of motion by curvature control (Degond and Motsch in J. Stat. Phys. 131(6):989–1021, 2008; Gautrais et al. in J. Math. Biol. 58(3):429–445, 2009). The PTW model was designed to fit measured trajectories of individual fish (Gautrais et al. in J. Math. Biol. 58(3):429–445, 2009). The PTWA model (Persistent Turning Walker with Alignment) describes the displacements of agents which modify their curvature in order to align with their neighbors. The derivation of its macroscopic limit uses the non-classical notion of generalized collisional invariant introduced in (Degond and Motsch in Math. Models Methods Appl. Sci. 18(1):1193–1215, 2008). The macroscopic limit of the PTWA model involves two physical quantities, the density and the mean velocity of individuals. It is a system of hyperbolic type but is non-conservative due to a geometric constraint on the velocity. This system has the same form as the macroscopic limit of the Vicsek model (Degond and Motsch in Math. Models Methods Appl. Sci. 18(1):1193–1215, 2008) (the ‘Vicsek hydrodynamics’) but for the expression of the model coefficients. The numerical computations show that the numerical values of the coefficients are very close. The ‘Vicsek Hydrodynamic model’ appears in this way as a more generic macroscopic model of swarming behavior as originally anticipated.

[1]  J. Lions,et al.  Équations Différentielles Opérationnelles Et Problèmes Aux Limites , 1961 .

[2]  C. Hemelrijk,et al.  Self-Organized Shape and Frontal Density of Fish Schools , 2008 .

[3]  Pierre Degond,et al.  Continuum limit of self-driven particles with orientation interaction , 2007, 0710.0293.

[4]  Steven V. Viscido,et al.  Self-Organized Fish Schools: An Examination of Emergent Properties , 2002, The Biological Bulletin.

[5]  S. Meyn,et al.  Stability of Markovian processes III: Foster–Lyapunov criteria for continuous-time processes , 1993, Advances in Applied Probability.

[6]  A. Bertozzi,et al.  State Transitions and the Continuum Limit for a 2D Interacting, Self-Propelled Particle System , 2006, nlin/0606031.

[7]  Guy Theraulaz,et al.  Self-Organization in Biological Systems , 2001, Princeton studies in complexity.

[8]  Sébastien Motsch,et al.  Numerical Simulations of a Nonconservative Hyperbolic System with Geometric Constraints Describing Swarming Behavior , 2009, Multiscale Model. Simul..

[9]  Jos'e A. Carrillo,et al.  A well-posedness theory in measures for some kinetic models of collective motion , 2009, 0907.3901.

[10]  Djalil CHAFAÏ,et al.  Asymptotic analysis and diffusion limit of the Persistent Turning Walker Model , 2008, Asymptot. Anal..

[11]  A. Sznitman Topics in propagation of chaos , 1991 .

[12]  L. Gross Logarithmic Sobolev inequalities and contractivity properties of semigroups , 1993 .

[13]  P. Degond,et al.  Large Scale Dynamics of the Persistent Turning Walker Model of Fish Behavior , 2007, 0710.4996.

[14]  G. Parisi,et al.  Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study , 2007, Proceedings of the National Academy of Sciences.

[15]  H. Chaté,et al.  Modeling collective motion: variations on the Vicsek model , 2008 .

[16]  Julia K. Parrish,et al.  Factors influencing the structure and maintenance of fish schools , 2007 .

[17]  I D Couzin,et al.  Self-organized lane formation and optimized traffic flow in army ants , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[18]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[19]  Tamás Vicsek,et al.  Turning with the Others: Novel Transitions in an SPP Model with Coupling of Accelerations , 2008, 2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems.

[20]  P. Degond Macroscopic limits of the Boltzmann equation: a review , 2004 .

[21]  George N. Reeke,et al.  BOOK REVIEW: "SELF-ORGANIZATION IN BIOLOGICAL SYSTEMS" BY S. CAMAZINE, J. DENEUBOURG, N. R. FRANKS, J. SNEYD, G. THERAULAZ AND E. BONABEAU , 2002 .

[22]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[23]  I. Couzin,et al.  Self-Organization and Collective Behavior in Vertebrates , 2003 .

[24]  Seung-Yeal Ha,et al.  A simple proof of the Cucker-Smale flocking dynamics and mean-field limit , 2009 .

[25]  E. Tadmor,et al.  From particle to kinetic and hydrodynamic descriptions of flocking , 2008, 0806.2182.

[26]  R. Hinde,et al.  Advances in the study of behavior , 1966 .

[27]  G. Theraulaz,et al.  Analyzing fish movement as a persistent turning walker , 2009, Journal of mathematical biology.

[28]  I. Couzin,et al.  Collective memory and spatial sorting in animal groups. , 2002, Journal of theoretical biology.

[29]  Jesús Rosado,et al.  Asymptotic Flocking Dynamics for the Kinetic Cucker-Smale Model , 2010, SIAM J. Math. Anal..

[30]  Felipe Cucker,et al.  Emergent Behavior in Flocks , 2007, IEEE Transactions on Automatic Control.

[31]  H. Spohn Large Scale Dynamics of Interacting Particles , 1991 .

[32]  Janet Efstathiou,et al.  Modeling Complex Living Systems: A Kinetic Theory and Stochastic Game Approach , 2013, J. Oper. Res. Soc..

[33]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[34]  J. Deneubourg,et al.  Modulation of individual behavior and collective decision-making during aggregation site selection by the ant Messor barbarus , 2004, Behavioral Ecology and Sociobiology.

[35]  T. Vicsek,et al.  Collective behavior of interacting self-propelled particles , 2000, cond-mat/0611742.

[36]  École d'été de probabilités de Saint-Flour,et al.  Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .

[37]  Lorenzo Pareschi,et al.  Modeling and Computational Methods for Kinetic Equations , 2012 .

[38]  Pierre Degond,et al.  Congestion in a Macroscopic Model of Self-driven Particles Modeling Gregariousness , 2009, 0908.1817.

[39]  B. Perthame,et al.  Derivation of hyperbolic models for chemosensitive movement , 2005, Journal of mathematical biology.

[40]  T. Vicsek,et al.  New aspects of the continuous phase transition in the scalar noise model (SNM) of collective motion , 2006, nlin/0611031.

[41]  Nicola Bellomo,et al.  Modeling Complex Living Systems: A Kinetic Theory and Stochastic Game Approach , 2007 .

[42]  Jos'e Antonio Carrillo,et al.  Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming , 2010, 1009.5166.

[43]  E. Bonabeau,et al.  Spatial patterns in ant colonies , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Vicsek,et al.  Novel type of phase transition in a system of self-driven particles. , 1995, Physical review letters.

[45]  D. Bakry,et al.  Rate of convergence for ergodic continuous Markov processes : Lyapunov versus Poincaré , 2007, math/0703355.

[46]  F. Rühs,et al.  J. L. Lions, Équations Différentielles Opérationnelles et Problèmes aux Limites. IX + 292 S. Berlin/Göttingen/Heidelberg 1961. Springer-Verlag. Preis geb. 64,— , 1962 .

[47]  E. Bertin,et al.  Boltzmann and hydrodynamic description for self-propelled particles. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.