A Posteriori Error Estimates for Finite Element Approximation of Unsteady Incompressible Stochastic Navier-Stokes Equations
暂无分享,去创建一个
[1] Carsten Carstensen,et al. A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.
[2] Alain Bensoussan,et al. Stochastic Navier-Stokes Equations , 1995 .
[3] Yubin Yan,et al. Galerkin Finite Element Methods for Stochastic Parabolic Partial Differential Equations , 2005, SIAM J. Numer. Anal..
[4] Jacques Simon,et al. On the Existence of the Pressure for Solutions of the Variational Navier—Stokes Equations , 1999 .
[5] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[6] Ruo Li,et al. A Posteriori Error Estimates of Recovery Type for Distributed Convex Optimal Control Problems , 2007, J. Sci. Comput..
[7] Jonathan C. Mattingly. On recent progress for the stochastic Navier Stokes equations , 2004, math/0409194.
[8] Christine Bernardi,et al. Weighted Clément operator and application to the finite element discretization of the axisymmetric Stokes problem , 2006, Numerische Mathematik.
[9] W. B. Liu,et al. Quasi-norm Error Bounds for the Nite Element Approximation of a Non-newtonian Ow , 1994 .
[10] Kwang Y. Kim. A posteriori error estimators for locally conservative methods of nonlinear elliptic problems , 2007 .
[11] Wenbin Liu,et al. A Posteriori Error Estimates for Finite Element Approximation of Parabolic p-Laplacian , 2006, SIAM J. Numer. Anal..
[12] Wenbin Liu,et al. Quasi-norm a priori and a posteriori error estimates for the nonconforming approximation of p-Laplacian , 2001, Numerische Mathematik.
[13] Yinnian He,et al. Two-level Stabilized Finite Element Methods for the Steady Navier–Stokes Problem , 2005, Computing.
[14] W. B. Liu,et al. Quasi-Norm interpolation error estimates for the piecewise linear finite element approximation of p-Laplacian problems , 2005, Numerische Mathematik.
[15] Ningning Yan,et al. A Posteriori Error Estimators of Gradient Recovery Type for Elliptic Obstacle Problems , 2001, Adv. Comput. Math..
[16] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[17] José A. Langa,et al. Existence and Regularity of the Pressure for the Stochastic Navier–Stokes Equations , 2003 .
[18] C. Carstensen. QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .
[19] Wei Wang,et al. The approximation of a Crank-Nicolson scheme for the stochastic Navier-Stokes equations , 2009 .
[20] M. Capinski,et al. On the existence of a solution to stochastic Navier—Stokes equations , 2001 .
[21] Wenbin Liu,et al. Quasi-Norm Local Error Estimators for p-Laplacian , 2001, SIAM J. Numer. Anal..