Mechanical characterization of hotplate synthesized vanadium oxide nanobelts

[1]  J. Velázquez,et al.  Catalytic growth of single-crystalline V(2)O(5) nanowire arrays. , 2009, Small.

[2]  R. Nesper,et al.  Mechanical and electronic properties of vanadium oxide nanotubes , 2009 .

[3]  G. A. Fontalvo,et al.  Structural and mechanical properties of dc and pulsed dc reactive magnetron sputtered V2O5 films , 2007 .

[4]  C. Lim,et al.  WO3-x Nanorods Synthesized on a Thermal Hot Plate , 2007 .

[5]  Hongrui Peng,et al.  A simple route to V2O5·xH2O bundle-like nanostructures , 2007 .

[6]  C. M. Torres,et al.  Vanadate conformation variations in vanadium pentoxide nanostructures , 2007 .

[7]  Claudia Felser,et al.  Spectroscopic and microscopic study of vanadium oxide nanotubes , 2007 .

[8]  R. Binions,et al.  Synthesis and Functional Properties of Vanadium Oxides: V2O3, VO2, and V2O5 Deposited on Glass by Aerosol‐Assisted CVD , 2007 .

[9]  Y. S. Zhang,et al.  Determination of the natural frequency of a cantilevered ZnO nanowire resonantly excited by a sinusoidal electric field , 2007, Nanotechnology.

[10]  J. Ha,et al.  Control of adsorption and alignment of V2O5 nanowires via chemically functionalized patterns , 2007 .

[11]  Enge Wang,et al.  In situ probing mechanical properties of individual tungsten oxide nanowires directly grown on tungsten tips inside transmission electron microscope , 2006 .

[12]  C. Leroy,et al.  Designing the Width and Texture of Vanadium Oxide Macroscopic Fibers: Towards Tuning Mechanical Properties and Alcohol‐Sensing Performance , 2006 .

[13]  Y. S. Zhang,et al.  Size dependence of Young's modulus in ZnO nanowires. , 2006, Physical review letters.

[14]  Stephane Evoy,et al.  Diameter-dependent electromechanical properties of GaN nanowires. , 2006, Nano letters.

[15]  F. Jachmann,et al.  High elastic modulus in b-axis-oriented single crystal V2O5 , 2005 .

[16]  Li-Jun Wan,et al.  Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. , 2005, Angewandte Chemie.

[17]  C. Park,et al.  V2O5 nanowire-based nanoelectronic devices for helium detection , 2005 .

[18]  Qing Peng,et al.  Vanadium Pentoxide Nanobelts: Highly Selective and Stable Ethanol Sensor Materials , 2005 .

[19]  H. Zeng,et al.  Room-temperature ferromagnetic nanotubes controlled by electron or hole doping , 2004, Nature.

[20]  Kyungsuk Yum,et al.  Experimental measurement and model analysis of damping effect in nanoscale mechanical beam resonators in air , 2004 .

[21]  Ying Wang,et al.  Synthesis and Electrochemical Properties of Single-Crystal V2O5 Nanorod Arrays by Template-Based Electrodeposition , 2004 .

[22]  Gregory J. Wagner,et al.  Mechanical resonance of quartz microfibers and boundary condition effects , 2004 .

[23]  F. Netzer,et al.  Vanadium oxide surface studies , 2003 .

[24]  S. Shivashankar,et al.  Growth of nanowires of β-NaxV2O5 by metalorganic chemical vapor deposition , 2003 .

[25]  Robert Schlögl,et al.  Local Structure of Nanoscopic Materials: V2O5 Nanorods and Nanowires , 2003 .

[26]  Enge Wang,et al.  Dual-mode mechanical resonance of individual ZnO nanobelts , 2003 .

[27]  Gyu-Tae Kim,et al.  V2O5 nanofibre sheet actuators , 2003, Nature materials.

[28]  M. Kanatzidis,et al.  Structure of V(2)O(5)*nH(2)O xerogel solved by the atomic pair distribution function technique. , 2002, Journal of the American Chemical Society.

[29]  J. Hou,et al.  Hydrothermal preparation of long nanowires of vanadium oxide , 2002 .

[30]  Yadong Li,et al.  Self-assembling vanadium oxide nanotubes by organic molecular templates. , 2002, Inorganic chemistry.

[31]  C. E. Tracy,et al.  Preparation and Lithium Insertion Properties of Mesoporous Vanadium Oxide , 2002 .

[32]  M. Bellissent-Funel,et al.  Interlayer water molecules in vanadium pentoxide hydrate, V2O5·nH2O. 7. Quasi-elastic neutron scattering study , 2000 .

[33]  Gyu-Tae Kim,et al.  Field-effect transistor made of individual V2O5 nanofibers , 2000 .

[34]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[35]  E. Ponzi,et al.  Obtaining benzaldehyde via promoted V2O5 catalysts , 1998 .

[36]  S. Kittaka,et al.  Interlayer Water Molecules in the Vanadium Pentoxide Hydrate, V2O5·nH2O. 6. Rigidity of Crystal Structure against Water Adsorption and Anisotropy of Electrical Conductivity , 1996 .

[37]  S. Kittaka,et al.  Interlayer water molecules of vanadium pentoxide hydrate, V2O5nH2O: 3. Calorimetric characterization below n = 2.3 , 1992 .

[38]  T. Yao,et al.  Layered structures of vanadium pentoxide gels , 1992 .

[39]  J. Watt,et al.  Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with orthorhombic symmetry , 1979 .

[40]  W. H. Barnes,et al.  The crystal structure of vanadium pentoxide , 1961 .

[41]  L. Mai,et al.  Raman spectroscopic study of vanadium oxide nanotubes , 2004 .

[42]  J. T. Ranney,et al.  The Surface Science of Metal Oxides , 1995 .

[43]  Takeshi Yao,et al.  Layered structures of hydrated vanadium oxides. Part 2.—Vanadyl intercalates (VO)xV2O5·nH2O , 1992 .

[44]  N. Uchida,et al.  Interlayer water molecules of vandium pentaoxide hydrate. Part 1.—Phase equilibrium with water vapour at a relative pressure higher than 0.005 , 1989 .

[45]  Leonard Meirovitch,et al.  Elements Of Vibration Analysis , 1986 .

[46]  S. Solin,et al.  Raman and IR absorption spectroscopic studies on α, β, and amorphous Si3N4 , 1981 .