Broadband parametric amplifiers based on nonlinear kinetic inductance artificial transmission lines

We present broadband parametric amplifiers based on the kinetic inductance of superconducting NbTiN thin films in an artificial (lumped-element) transmission line architecture. We demonstrate two amplifier designs implementing different phase matching techniques: periodic impedance loading and resonator phase shifters placed periodically along the transmission line. Our design offers several advantages over previous CPW-based amplifiers, including intrinsic 50 Ω characteristic impedance, natural suppression of higher pump harmonics, lower required pump power, and shorter total trace length. Experimental realizations of both versions of the amplifiers are demonstrated. With a transmission line length of 20 cm, we have achieved gains of 15 dB over several GHz of bandwidth.

[1]  G. Schmid The Nature of Nanotechnology , 2010 .

[2]  J. Clarke,et al.  Dispersive magnetometry with a quantum limited SQUID parametric amplifier , 2010, 1003.2466.

[3]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[4]  R. Barends,et al.  Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching , 2015, 1503.04364.

[5]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[6]  S. Filipp,et al.  Observation of two-mode squeezing in the microwave frequency domain. , 2011, Physical review letters.

[7]  G. C. Hilton,et al.  Amplification and squeezing of quantum noise with a tunable Josephson metamaterial , 2008, 0806.0659.

[8]  G. Alagic,et al.  #p , 2019, Quantum Inf. Comput..

[9]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[10]  G. Hilton,et al.  Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing. , 2015, Applied physics letters.

[11]  R. J. Schoelkopf,et al.  Analog information processing at the quantum limit with a Josephson ring modulator , 2008, 0805.3452.

[12]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[13]  H. Leduc,et al.  A wideband, low-noise superconducting amplifier with high dynamic range , 2012, Nature Physics.

[14]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[15]  Manuel Castellanos-Beltran,et al.  Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator , 2007 .

[16]  D. Pozar Microwave Engineering , 1990 .

[17]  I. Siddiqi,et al.  A near–quantum-limited Josephson traveling-wave parametric amplifier , 2015, Science.

[18]  S. Kubatkin,et al.  Superconducting microwave parametric amplifier based on a quasi-fractal slow propagation line , 2016 .

[19]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[20]  T. Klapwijk,et al.  Coherent Excited States in Superconductors due to a Microwave Field. , 2016, Physical review letters.

[21]  John M. Martinis,et al.  Multiplexed dispersive readout of superconducting phase qubits , 2011, 1209.1781.

[22]  Jonas Zmuidzinas,et al.  Superconducting Microresonators: Physics and Applications , 2012 .

[23]  J. Teufel,et al.  Nanomechanical motion measured with an imprecision below that at the standard quantum limit. , 2009, Nature nanotechnology.

[24]  Michael Vissers,et al.  Development of a Broadband NbTiN Traveling Wave Parametric Amplifier for MKID Readout , 2014 .

[25]  Rolf Landauer,et al.  Shock Waves in Nonlinear Transmission Lines and Their Effect on Parametric Amplification , 1960, IBM J. Res. Dev..

[26]  L. Wei,et al.  A tunable coupler for superconducting microwave resonators using a nonlinear kinetic inductance transmission line. , 2016, Applied physics letters.

[27]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[28]  J. Sauls,et al.  Journal of Low Temperature Physics: Preface , 2010 .

[29]  Remy Leblanc,et al.  Noise Measurements of Discrete HEMT Transistors and Application to Wideband Very Low-Noise Amplifiers , 2013, IEEE Transactions on Microwave Theory and Techniques.

[30]  Kent D. Irwin,et al.  Microwave SQUID multiplexer , 2004 .

[31]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[32]  James S. Langer,et al.  Annual review of condensed matter physics , 2010 .

[33]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.