Carbon Nanostructure-Based Field-Effect Transistors for Label-Free Chemical/Biological Sensors

Over the past decade, electrical detection of chemical and biological species using novel nanostructure-based devices has attracted significant attention for chemical, genomics, biomedical diagnostics, and drug discovery applications. The use of nanostructured devices in chemical/biological sensors in place of conventional sensing technologies has advantages of high sensitivity, low decreased energy consumption and potentially highly miniaturized integration. Owing to their particular structure, excellent electrical properties and high chemical stability, carbon nanotube and graphene based electrical devices have been widely developed for high performance label-free chemical/biological sensors. Here, we review the latest developments of carbon nanostructure-based transistor sensors in ultrasensitive detection of chemical/biological entities, such as poisonous gases, nucleic acids, proteins and cells.

[1]  J. Rogers,et al.  Electrical Detection of Femtomolar DNA via Gold‐Nanoparticle Enhancement in Carbon‐Nanotube‐Network Field‐Effect Transistors , 2008 .

[2]  Jean-Christophe Charlier,et al.  Electronic and transport properties of nanotubes , 2007 .

[3]  Hee Cheul Choi,et al.  Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications. , 2006, Journal of the American Chemical Society.

[4]  A. Majumdar Thermoelectric devices: Helping chips to keep their cool. , 2009, Nature nanotechnology.

[5]  M. Terranova Special Issue on Carbon Nanotubes , 2006 .

[6]  Tatsuro Endo,et al.  Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor. , 2005, Analytical chemistry.

[7]  M. T. Martínez,et al.  Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors. , 2009, Nano letters.

[8]  Cees Dekker,et al.  Identifying the mechanism of biosensing with carbon nanotube transistors. , 2008, Nano letters.

[9]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[10]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[11]  J Janata Chemical sensors. , 1990, Analytical chemistry.

[12]  U Zeitler,et al.  Room-Temperature Quantum Hall Effect in Graphene , 2007, Science.

[13]  M. Dresselhaus,et al.  Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly , 2003, Science.

[14]  Cees Dekker,et al.  Nanotechnology: Carbon nanotubes with DNA recognition , 2002, Nature.

[15]  Pooi See Lee,et al.  DNA sensing by field-effect transistors based on networks of carbon nanotubes. , 2007, Journal of the American Chemical Society.

[16]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[17]  A Paul Alivisatos,et al.  Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. , 2003, Analytical chemistry.

[18]  Christofer Hierold,et al.  Sub-ppm NO2 detection by Al2O3 contact passivated carbon nanotube field effect transistors , 2009 .

[19]  P. Ajayan,et al.  Reliability and current carrying capacity of carbon nanotubes , 2001 .

[20]  Bingling Li,et al.  Sensitive detection of protein by an aptamer-based label-free fluorescing molecular switch. , 2007, Chemical communications.

[21]  A. Heeger,et al.  An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. , 2006, Journal of the American Chemical Society.

[22]  A. Reina,et al.  Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. , 2009, Nano letters.

[23]  S. Pei,et al.  Graphene segregated on Ni surfaces and transferred to insulators , 2008, 0804.1778.

[24]  Y. Ohno,et al.  Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. , 2009, Nano letters.

[25]  Peng Chen,et al.  Electrical Detection of DNA Hybridization with Single‐Base Specificity Using Transistors Based on CVD‐Grown Graphene Sheets , 2010, Advanced materials.

[26]  Vijay K. Varadan,et al.  A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor , 2004 .

[27]  T. Michely,et al.  Structural coherency of graphene on Ir(111). , 2008, Nano letters.

[28]  Richard W. Siegel,et al.  Selective Attachment of Gold Nanoparticles to Nitrogen-Doped Carbon Nanotubes , 2003 .

[29]  Yuyuan Tian,et al.  Ionic screening of charged-impurity scattering in graphene. , 2009, Nano letters.

[30]  C. Berger,et al.  Electronic Confinement and Coherence in Patterned Epitaxial Graphene , 2006, Science.

[31]  M. Itkis,et al.  Chemistry of single-walled carbon nanotubes. , 2002, Accounts of chemical research.

[32]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[33]  Raymond Tsui,et al.  Electrical detection of hepatitis C virus RNA on single wall carbon nanotube-field effect transistors. , 2007, The Analyst.

[34]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[35]  Christopher M. Strohsahl,et al.  Reflective interferometric detection of label-free oligonucleotides. , 2004, Analytical chemistry.

[36]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[37]  P. Ajayan Nanotubes from Carbon. , 1999, Chemical reviews.

[38]  A. Noy,et al.  Controlled electrostatic gating of carbon nanotube FET devices. , 2006, Nano letters.

[39]  N. Myung,et al.  Recent progress in carbon nanotube-based gas sensors , 2008, Nanotechnology.

[40]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[41]  R. Ruoff,et al.  Chemical methods for the production of graphenes. , 2009, Nature nanotechnology.

[42]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[43]  Alexander Star,et al.  Electronic Detection of Specific Protein Binding Using Nanotube FET Devices , 2003 .

[44]  Sang Jun Sim,et al.  Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments. , 2008, Analytical biochemistry.

[45]  Zettl,et al.  Extreme oxygen sensitivity of electronic properties of carbon nanotubes , 2000, Science.

[46]  Shuichi Takayama,et al.  Zwitterionic SAMs that Resist Nonspecific Adsorption of Protein from Aqueous Buffer. , 2001, Langmuir : the ACS journal of surfaces and colloids.

[47]  Weihong Tan,et al.  Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. , 2006, Analytical chemistry.

[48]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Richard Martel,et al.  Controlling doping and carrier injection in carbon nanotube transistors , 2002 .

[50]  M. Zheng,et al.  DNA-assisted dispersion and separation of carbon nanotubes , 2003, Nature materials.

[51]  Zhenan Bao,et al.  Sorted and aligned single-walled carbon nanotube networks for transistor-based aqueous chemical sensors. , 2009, ACS nano.

[52]  Nicola Marzari,et al.  Sensing mechanisms for carbon nanotube based NH3 gas detection. , 2009, Nano letters.

[53]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[54]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[55]  Seung Yol Jeong,et al.  Enhanced Sensitivity of a Gas Sensor Incorporating Single‐Walled Carbon Nanotube–Polypyrrole Nanocomposites , 2004 .

[56]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[57]  R. Cattrall Chemical Sensors , 1997 .

[58]  K. Besteman,et al.  Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors , 2003 .

[59]  J. F. Stoddart,et al.  Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor. , 2006, Nano letters.

[60]  Qian Wang,et al.  An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. , 2004, Journal of the American Chemical Society.

[61]  T. Ebbesen,et al.  Helical Crystallization of Proteins on Carbon Nanotubes: A First Step towards the Development of New Biosensors. , 1999, Angewandte Chemie.

[62]  E. Tu,et al.  Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Cohen,et al.  Is the intrinsic thermoelectric power of carbon nanotubes positive? , 2000, Physical review letters.

[64]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[65]  H. Dai,et al.  Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. , 2001, Journal of the American Chemical Society.

[66]  D. Zack,et al.  Monoclonal antibodies reveal the structural basis of antibody diversity. , 1983, Science.

[67]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[68]  R. A. McGill,et al.  Nerve agent detection using networks of single-walled carbon nanotubes , 2003 .

[69]  Jeong-O Lee,et al.  Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. , 2005, Journal of the American Chemical Society.

[70]  Vikram Joshi,et al.  Nanoelectronic Carbon Dioxide Sensors , 2004 .

[71]  Kenzo Maehashi,et al.  Ultrasensitive Detection of DNA Hybridization Using Carbon Nanotube Field-Effect Transistors , 2004 .

[72]  S. P. Fodor,et al.  Light-generated oligonucleotide arrays for rapid DNA sequence analysis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[73]  J. Suehiro,et al.  DETECTION OF PARTIAL DISCHARGE IN SF6 GAS USING A CARBON NANOTUBE-BASED GAS SENSOR , 2005 .

[74]  M. Dragoman,et al.  Graphene-based quantum electronics , 2009 .

[75]  Dan Davidov,et al.  Intercalation compounds of graphite , 1982 .

[76]  Kyung-Hwa Yoo,et al.  Electrically refreshable carbon-nanotube-based gas sensors , 2007 .

[77]  J. Flege,et al.  Epitaxial graphene on ruthenium. , 2008, Nature materials.

[78]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[79]  Qian Wang,et al.  Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection. , 2003, Nano letters.

[80]  Charles M Lieber,et al.  Graphene and nanowire transistors for cellular interfaces and electrical recording. , 2010, Nano letters.

[81]  A Javey,et al.  Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. , 2001, Journal of the American Chemical Society.

[82]  Phaedon Avouris,et al.  The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. , 2005, Nano letters.

[83]  R. Tsien,et al.  The Fluorescent Toolbox for Assessing Protein Location and Function , 2006, Science.

[84]  M. Shim,et al.  Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[85]  P. Debye,et al.  Dieletric Properties of Pure Liquids. , 1936 .

[86]  John A. Rogers,et al.  Electrical detection of hybridization and threading intercalation of deoxyribonucleic acid using carbon nanotube network field-effect transistors , 2006 .

[87]  Martin Moskovits,et al.  Chemical Sensing and Catalysis by One-Dimensional Metal-Oxide Nanostructures , 2004 .

[88]  H. R. Krishnamurthy,et al.  Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. , 2008, Nature nanotechnology.

[89]  P. Kim,et al.  Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.

[90]  N. Mohanty,et al.  Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. , 2008, Nano letters.

[91]  Cornelis J. Weijer,et al.  Visualizing Signals Moving in Cells , 2003, Science.

[92]  T. Someya,et al.  Alcohol Vapor Sensors Based on Single-Walled Carbon Nanotube Field Effect Transistors , 2003 .

[93]  Hongjie Dai,et al.  Functionalized Carbon Nanotubes for Molecular Hydrogen Sensors , 2001 .

[94]  Chih-Ching Huang,et al.  Selective gold-nanoparticle-based "turn-on" fluorescent sensors for detection of mercury(II) in aqueous solution. , 2006, Analytical chemistry.

[95]  W. Milne,et al.  Self-assembled nanotube field-effect transistors for label-free protein biosensors , 2008 .

[96]  L. Ocola,et al.  Gas detection using low-temperature reduced graphene oxide sheets , 2009 .

[97]  H. B. Weber,et al.  Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. , 2009, Nature materials.

[98]  Y. Chang,et al.  Carbon nanotube DNA sensor and sensing mechanism. , 2006, Nano letters.

[99]  Priscilla Kailian Ang,et al.  Solution-gated epitaxial graphene as pH sensor. , 2008, Journal of the American Chemical Society.

[100]  S. Rudikoff,et al.  Size differences among immunoglobulin heavy chains from phosphorylcholine-binding proteins. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Zhongqing Wei,et al.  Reduced graphene oxide molecular sensors. , 2008, Nano letters.

[102]  A. Govindaraj,et al.  Binding of DNA nucleobases and nucleosides with graphene. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[103]  H. Dai,et al.  Carbon nanotubes as intracellular protein transporters: generality and biological functionality. , 2005, Journal of the American Chemical Society.

[104]  Riichiro Saito,et al.  Electronic structure of chiral graphene tubules , 1992 .

[105]  L. Nagahara,et al.  In situ detection of cytochrome c adsorption with single walled carbon nanotube device , 2003 .

[106]  Martin Moskovits,et al.  CHEMICAL SENSING AND CATALYSIS BY ONE-DIMENSIONAL METAL-OXIDE NANOSTRUCTURES , 2004 .

[107]  Kenzo Maehashi,et al.  Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. , 2007, Analytical chemistry.

[108]  E. Tamiya,et al.  Aptamer‐Based Label‐Free Immunosensors Using Carbon Nanotube Field‐Effect Transistors , 2009 .