The Human and Mouse Enteric Nervous System at Single-Cell Resolution

[1]  B. Helmink,et al.  The Influence of the Gut Microbiome on Cancer, Immunity, and Cancer Immunotherapy. , 2018, Cancer cell.

[2]  Sean C. Bendall,et al.  Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis , 2015, Cell.

[3]  N. Kessaris,et al.  Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. , 2011, The Journal of clinical investigation.

[4]  L. Scheving,et al.  Biological clocks and the digestive system. , 2000, Gastroenterology.

[5]  L. Larue,et al.  Involvement of endothelin receptors in normal and pathological development of neural crest cells. , 2003, The International journal of developmental biology.

[6]  Christopher S. Poultney,et al.  Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci , 2015, Neuron.

[7]  A. Garfield,et al.  Role of central melanocortin pathways in energy homeostasis , 2009, Trends in Endocrinology & Metabolism.

[8]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[9]  P. Linsley,et al.  MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data , 2015, Genome Biology.

[10]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[11]  Marcello Costa,et al.  Galanin-immunoreactive neurons in the guinea-pig small intestine: their projections and relationships to other enteric neurons , 1987, Cell and Tissue Research.

[12]  R. Pfeiffer Gastrointestinal dysfunction in Parkinson's disease. , 2011, Parkinsonism & related disorders.

[13]  E. Bonora,et al.  Enteric neuropathies: Yesterday, Today and Tomorrow. , 2016, Advances in experimental medicine and biology.

[14]  Y. Kluger,et al.  Enteric Nervous System-Derived IL-18 Orchestrates Mucosal Barrier Immunity , 2020, Cell.

[15]  Jaleel A. Miyan,et al.  Calcitonin gene-related peptide is a key neurotransmitter in the neuro-immune axis , 2014, Front. Neurosci..

[16]  H. Young,et al.  Analysis of connections between nitric oxide synthase neurons in the myenteric plexus of the guinea-pig small intestine , 1995, Journal of neurocytology.

[17]  E. Kostenis,et al.  The neuropeptide Neuromedin U stimulates innate lymphoid cells and type 2 inflammation , 2017, Nature.

[18]  Kerstin B. Meyer,et al.  Single-cell reconstruction of the early maternal–fetal interface in humans , 2018, Nature.

[19]  Christopher S. McGinnis,et al.  DoubletFinder: Doublet detection in single-cell RNA sequencing data using artificial nearest neighbors , 2018, bioRxiv.

[20]  M. Nalls,et al.  A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci , 2017, Nature Genetics.

[21]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[22]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[23]  Steven M. Miller,et al.  Prevertebral ganglia and intestinofugal afferent neurones , 2002, Gut.

[24]  I. Kodner,et al.  Axonal degeneration/necrosis: a possible ultrastructural marker for Crohn's disease. , 1988, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc.

[25]  E. Stupka,et al.  An RNA-Seq atlas of gene expression in mouse and rat normal tissues , 2017, Scientific Data.

[26]  A. Regev,et al.  Efficient Generation of Transcriptomic Profiles by Random Composite Measurements , 2017, Cell.

[27]  Allon M Klein,et al.  Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data. , 2019, Cell systems.

[28]  J. D. Di Santo,et al.  IL-7 and IL-15 independently program the differentiation of intestinal CD3−NKp46+ cell subsets from Id2-dependent precursors , 2010, The Journal of experimental medicine.

[29]  Andrew P. McMahon,et al.  Neural crest origins of the neck and shoulder , 2005, Nature.

[30]  Terrence J. Sejnowski,et al.  Epigenomic Signatures of Neuronal Diversity in the Mammalian Brain , 2015, Neuron.

[31]  Valentina Sasselli,et al.  The enteric nervous system. , 2012, Developmental biology.

[32]  K. Ullman,et al.  The nuclear envelope: form and reformation. , 2006, Current opinion in cell biology.

[33]  A. Brice,et al.  Parkinson's disease: from monogenic forms to genetic susceptibility factors. , 2009, Human molecular genetics.

[34]  Tommi Vatanen,et al.  Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans , 2016, Cell.

[35]  Aviv Regev,et al.  Rewiring of the cellular and inter-cellular landscape of the human colon during ulcerative colitis , 2018 .

[36]  Lars E. Borm,et al.  Molecular Architecture of the Mouse Nervous System , 2018, Cell.

[37]  A. Regev,et al.  Molecular Classification and Comparative Taxonomics of Foveal and Peripheral Cells in Primate Retina , 2018, Cell.

[38]  Cynthia C. Hession,et al.  Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons , 2016, Science.

[39]  T. Sauka-Spengler,et al.  Genomic code for Sox10 activation reveals a key regulatory enhancer for cranial neural crest , 2010, Proceedings of the National Academy of Sciences.

[40]  P. Hahn,et al.  Feeding-dependent VIP neuron-ILC3 circuit regulates the intestinal barrier , 2020, Nature.

[41]  H. Young,et al.  Chemical coding of neurons in the myenteric plexus and external muscle of the small and large intestine of the mouse , 1996, Cell and Tissue Research.

[42]  Aviv Regev,et al.  Massively-parallel single nucleus RNA-seq with DroNc-seq , 2017, Nature Methods.

[43]  Vincent A. Traag,et al.  From Louvain to Leiden: guaranteeing well-connected communities , 2018, Scientific Reports.

[44]  Monika S. Kowalczyk,et al.  The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation , 2017, Nature.

[45]  Tobias Pietzsch,et al.  ImgLib2—generic image processing in Java , 2012, Bioinform..

[46]  I. Hertz-Picciotto,et al.  Gastrointestinal Problems in Children with Autism, Developmental Delays or Typical Development , 2013, Journal of Autism and Developmental Disorders.

[47]  Evan Z. Macosko,et al.  Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics , 2016, Cell.

[48]  S. Brookes,et al.  Identification and immunohistochemistry of cholinergic and non-cholinergic circular muscle motor neurons in the guinea-pig small intestine , 1991, Neuroscience.

[49]  E. M. Southard-Smith,et al.  Mouse models of Hirschsprung disease and other developmental disorders of the enteric nervous system: Old and new players. , 2016, Developmental biology.

[50]  Philippe Soriano,et al.  The widely used Wnt1-Cre transgene causes developmental phenotypes by ectopic activation of Wnt signaling. , 2013, Developmental biology.

[51]  S. Brookes,et al.  Calretinin immunoreactivity in cholinergic motor neurones, interneurones and vasomotor neurones in the guinea-pig small intestine , 1991, Cell and Tissue Research.

[52]  Piero Carninci,et al.  A draft network of ligand–receptor-mediated multicellular signalling in human , 2015, Nature Communications.

[53]  Johannes E. Schindelin,et al.  The ImageJ ecosystem: An open platform for biomedical image analysis , 2015, Molecular reproduction and development.

[54]  A. Regev,et al.  Transcriptional Atlas of Intestinal Immune Cells Reveals that Neuropeptide α-CGRP Modulates Group 2 Innate Lymphoid Cell Responses. , 2019, Immunity.

[55]  A. Dvorak,et al.  Differentiation between Crohn's disease and other inflammatory conditions by electron microscopy. , 1985, Annals of surgery.

[56]  I. Junttila Tuning the Cytokine Responses: An Update on Interleukin (IL)-4 and IL-13 Receptor Complexes , 2018, Front. Immunol..

[57]  Y. Edwards,et al.  PGP9.5, a ubiquitin C-terminal hydrolase; pattern of mRNA and protein expression during neural development in the mouse. , 1995, Brain research. Developmental brain research.

[58]  Stephan J Sanders,et al.  Integrative functional genomic analysis of human brain development and neuropsychiatric risks , 2018, Science.

[59]  C. Legay Why so many forms of acetylcholinesterase? , 2000, Microscopy research and technique.

[60]  J. Grider Neurotransmitters Mediating the Intestinal Peristaltic Reflex in the Mouse , 2003, Journal of Pharmacology and Experimental Therapeutics.

[61]  Timothy K. Soh,et al.  The brain parenchyma has a type I interferon response that can limit virus spread , 2016, Proceedings of the National Academy of Sciences.

[62]  Allan R. Jones,et al.  Conserved cell types with divergent features in human versus mouse cortex , 2019, Nature.

[63]  John B. Furness,et al.  The enteric nervous system and neurogastroenterology , 2012, Nature Reviews Gastroenterology &Hepatology.

[64]  Hans Clevers,et al.  De Novo Crypt Formation and Juvenile Polyposis on BMP Inhibition in Mouse Intestine , 2004, Science.

[65]  S. Mazmanian,et al.  The Enteric Network: Interactions between the Immune and Nervous Systems of the Gut. , 2017, Immunity.

[66]  M. Merad,et al.  Crosstalk between Muscularis Macrophages and Enteric Neurons Regulates Gastrointestinal Motility , 2014, Cell.

[67]  V. D’Agati,et al.  Renal agenesis and hypodysplasia in ret-k- mutant mice result from defects in ureteric bud development. , 1996, Development.

[68]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[69]  C. Rueden,et al.  Metadata matters: access to image data in the real world , 2010, The Journal of cell biology.

[70]  J. Grider Interplay of somatostatin, opioid, and GABA neurons in the regulation of the peristaltic reflex. , 1994, The American journal of physiology.

[71]  Yarden Katz,et al.  A single-cell survey of the small intestinal epithelium , 2017, Nature.

[72]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[73]  Donald M. Bell,et al.  Lineage-dependent spatial and functional organization of the mammalian enteric nervous system , 2017, Science.

[74]  M. Schwartz,et al.  Targeting neuro–immune communication in neurodegeneration: Challenges and opportunities , 2018, The Journal of experimental medicine.

[75]  W. Boesmans,et al.  Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system , 2015, Glia.

[76]  X. Zuo,et al.  Brain-derived neurotrophic factor contributes to abdominal pain in irritable bowel syndrome , 2011, Gut.

[77]  A Uchl1‐Histone2BmCherry:GFP‐gpi BAC transgene for imaging neuronal progenitors , 2013, Genesis.

[78]  A. Fasano,et al.  Gastrointestinal dysfunction in Parkinson's disease , 2003, The Lancet Neurology.

[79]  Steven L. Brunton,et al.  Randomized Matrix Decompositions using R , 2016, Journal of Statistical Software.

[80]  A. Zinsmeister,et al.  Effect of age on the enteric nervous system of the human colon , 2009, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[81]  M. Saarma,et al.  Retarded Growth and Deficits in the Enteric and Parasympathetic Nervous System in Mice Lacking GFRα2, a Functional Neurturin Receptor , 1999, Neuron.

[82]  Yuting Liu,et al.  Analysis of Gene Regulatory Networks in the Mammalian Circadian Rhythm , 2008, PLoS Comput. Biol..

[83]  Michael I. Jordan,et al.  Deep Generative Modeling for Single-cell Transcriptomics , 2018, Nature Methods.

[84]  J. Furness,et al.  The enteric nervous system and regulation of intestinal motility. , 1999, Annual review of physiology.

[85]  M. F. Ceriani,et al.  Neuronal and Glial Clocks Underlying Structural Remodeling of Pacemaker Neurons in Drosophila , 2017, Front. Physiol..

[86]  David R. Kelley,et al.  Solo: Doublet Identification in Single-Cell RNA-Seq via Semi-Supervised Deep Learning. , 2020, Cell systems.

[87]  J. Tapia,et al.  Lethal impairment of cholinergic neurotransmission in hemicholinium-3-sensitive choline transporter knockout mice. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[88]  L. Sommer,et al.  Cre‐driver lines used for genetic fate mapping of neural crest cells in the mouse: An overview , 2018, Genesis.

[89]  J. Furness,et al.  Intrinsic primary afferent neurons and nerve circuits within the intestine , 2004, Progress in Neurobiology.

[90]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .