Open pond culture systems

Open pond culture systems are the main type of culture system used in the commercial-scale culture of microalgae and because of their relatively low cost are the systems most likely to be used for the production of microalgae for biofuels. These ‘open’ systems can be broadly classified as shallow lagoons and ponds, inclined (cascade) systems, circular central-pivot ponds, simple mixed ponds, and ‘raceway’ ponds. The raceway ponds are by far the most commonly used. This Chapter describes these systems in detail as well as their advantages and disadvantages. The management of such systems to achieve reliable, long-term, high-productivity cultures is a challenge, especially on the large scale and the various options and strategies available are reviewed as are options for maximizing algae productivity.

[1]  Y. Watanabe,et al.  Photosynthetic production of microalgal biomass in a raceway system under greenhouse conditions in Sendai city. , 2000, Journal of bioscience and bioengineering.

[2]  Yuan-Kun Lee,et al.  Commercial production of microalgae in the Asia-Pacific rim , 1997, Journal of Applied Phycology.

[3]  B. Osborne,et al.  Respiration and microalgal growth: a review of the quantitative relationship between dark respiration and growth , 1989 .

[4]  T. Kanazawa,et al.  MASS CULTURE OF UNICELLULAR ALGAE USING THE "OPEN CIRCULATION METHOD" , 1958 .

[5]  W. Marshall,et al.  Airborne dispersal of antarctic terrestrial algae and cyanobacteria , 1997 .

[6]  P. Hartig,et al.  On the mass culture of microalgae: Areal density as an important factor for achieving maximal productivity , 1988 .

[7]  A. Sukenik,et al.  Selective effect of the herbicide DCMU on unicellular algae — a potential tool to maintain monoalgal mass culture ofNannochloropsis , 1996, Journal of Applied Phycology.

[8]  T. Brown,et al.  THE EFFECT OF GROWTH ENVIRONMENT ON THE PHYSIOLOGY OF ALGAE: LIGHT INTENSITY 1 2 , 1968, Journal of phycology.

[9]  Ivan Málek,et al.  Dual Purpose Open Circulation Units for Large Scale Culture of Algae in Temperate Zones. I. Basic Design Considerations and Scheme of a Pilot Plant , 1970 .

[10]  K. Banse RATES OF GROWTH, RESPIRATION AND PHOTOSYNTHESIS OF UNICELLULAR ALGAE AS RELATED TO CELL SIZE—A REVIEW 1, 2 , 1976 .

[11]  S. Rothbard Control of euplotes sp by formalin in growth tanks of chlorella sp used as growth medium for the rotifer brachionus plicatilis which serves as feed for hatchlings , 1975 .

[12]  A. Vonshak,et al.  Chlorophyll Fluorescence Applications in Microalgal Mass Cultures , 2010 .

[13]  A. Belay Mass culture of Spirulina outdoors--the earthrise farms experience , 1997 .

[14]  R. J. Ritchie,et al.  Modelling photosynthetic photon flux density and maximum potential gross photosynthesis , 2010, Photosynthetica.

[15]  E. Becker Microalgae: Biotechnology and Microbiology , 1994 .

[16]  I. Probert,et al.  Toxicity of coastal coccolithophores (Prymnesiophyceae, Haptophyta) , 2004 .

[17]  A. Richmond,et al.  The photosynthetic efficiency of Chlorella biomass growth with reference to solar energy utilisation , 2007 .

[18]  A. Vonshak,et al.  Photoadaptation, photoinhibition and productivity in the blue‐green alga, Spirulina platensis grown outdoors , 1992 .

[19]  D. M. Nelson,et al.  Growth and competition of the marine diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. I. Nutrient effects , 1979 .

[20]  Philip Owende,et al.  Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products , 2010 .

[21]  P. Mullineaux,et al.  The Role of Oxygen in Photoinhibition of Photosynthesis* , 2019, Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants.

[22]  Michael A. Borowitzka,et al.  Culturing microalgae in outdoor ponds , 2005 .

[23]  M. Cottrell,et al.  Wide-spread occurrence and clonal variation in viruses which cause lysis of a cosmopolitan, eukaryotic marine phytoplankter Micromonas pusilla , 1991 .

[24]  T. Weisse,et al.  Effect of pH on growth, cell volume, and production of freshwater ciliates, and implications for their distribution , 2006 .

[25]  Giuseppe Torzillo,et al.  Use of chlorophyll fluorescence to estimate the effect of photoinhibition in outdoor cultures ofSpirulina platensis , 1994, Journal of Applied Phycology.

[26]  John W. Lund,et al.  Direct utilization of geothermal energy. , 2010 .

[27]  B. G. Yeoh,et al.  Spirulina cultivation in digested sago starch factory wastewater , 2000, Journal of Applied Phycology.

[28]  J. S. Lee,et al.  Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii , 2003, Journal of Applied Phycology.

[29]  Hugo Guterman,et al.  PHYSIOLOGICAL CHARACTERISTICS OF SPIRULINA PLATENSIS (CYANOBACTERIA) CULTURED AT ULTRAHIGH CELL DENSITIES 1 , 1996 .

[30]  Johannes Tramper,et al.  Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. , 2003, Biotechnology and bioengineering.

[31]  R. Krauss MASS CULTURE OF ALGAE FOR FOOD AND OTHER ORGANIC COMPOUNDS , 1962 .

[32]  G. Bratbak,et al.  Stable coexistence in marine algal host-virus systems , 2003 .

[33]  E. Laws,et al.  A simple algal production system designed to utilize the flashing light effect , 1983, Biotechnology and bioengineering.

[34]  A. Belay,et al.  PHOTOINHIBITION OF PHOTOSYNTHESIS IN ASTERIONELLA FORMOSA (BACILLARIOPHYCEAE) 1, 2 , 1978 .

[35]  Giuseppe Torzillo,et al.  In situ monitoring of chlorophyll fluorescence to assess the synergistic effect of low temperature and high irradiance stresses inSpirulina cultures grown outdoors in photobioreactors , 1996, Journal of Applied Phycology.

[36]  J. Grobbelaar,et al.  Modeling algal productivity in large outdoor cultures and waste treatment systems , 1990 .

[37]  A. Richmond,et al.  Quantitative assessment of the major limitations on productivity ofSpirulina platensis in open raceways , 1990, Journal of Applied Phycology.

[38]  J. Raven,et al.  Photosynthesis in Algae , 2003, Advances in Photosynthesis and Respiration.

[39]  P. Marvan,et al.  The utilization of periphyton in waterworks pre-treatment for nutrient removal from enriched influents , 1983 .

[40]  Hu Qiang,et al.  Combined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (Cyanobacteria) , 1998 .

[41]  B. Prézelin The role of peridinin-chlorophyll a-proteins in the photosynthetic light adaption of the marine dinoflagellate, Glenodinium sp. , 2004, Planta.

[42]  P. Liss,et al.  Dimethylsulphide and dimethylsulphoniopropionate in the Northeast atlantic during the summer coccolithophore bloom , 1993 .

[43]  Trevor Platt,et al.  Physiological Bases of Phytoplankton Ecology , 1982 .

[44]  Mario R Tredici,et al.  Growth medium recycling in Nannochloropsis sp. mass cultivation. , 2003, Biomolecular engineering.

[45]  J. Rivas,et al.  Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds , 2007, Applied Microbiology and Biotechnology.

[46]  W. J. O'brien,et al.  Photosynthetically Elevated pH as a Factor in Zooplankton Mortality in Nutrient Enriched Ponds , 1972 .

[47]  B. Sweeney,et al.  ADAPTATION OF CERATIUM FURCA AND GONYAULAX POLYEDRA (DINOPHYCEACE) TO DIFFERENT TEMPERATURES AND IRRADIANCES: GROWTH RATES AND CELL VOLUMES 1 , 1982 .

[48]  P. Falkowski,et al.  Light-enhanced dark respiration in phytoplankton: With 1 figure and 1 table in the text , 1985 .

[49]  G. Hallegraeff,et al.  Economic importance of algae , 2007 .

[50]  A. Carvalho,et al.  Transfer of Carbon Dioxide within Cultures of Microalgae: Plain Bubbling versus Hollow‐Fiber Modules , 2001, Biotechnology progress.

[51]  P. Falkowski,et al.  Optimizing algal biomass production in an outdoor pond: a simulation model , 1991, Journal of Applied Phycology.

[52]  S. Boussiba,et al.  Mass cultivation of the nitrogen-fixing cyanobacteriumGloeotrichia natans, indigenous to rice-fields , 1990, Journal of Applied Phycology.

[53]  A. Prieto,et al.  Conditions for open-air outdoor culture of Dunaliella salina in southern Spain , 2003, Journal of Applied Phycology.

[54]  J. Grobbelaar,et al.  Upper limits of photosynthetic productivity and problems of scaling , 2009, Journal of Applied Phycology.

[55]  Osamu Tsukada,et al.  MASS CULTURE OF CHLORELLA IN ASIAN COUNTRIES , 1977 .

[56]  E. Cadenas,et al.  Biochemistry of oxygen toxicity. , 1989, Annual review of biochemistry.

[57]  E. Olguín,et al.  Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions , 2003, Journal of Applied Phycology.

[58]  D. O. Harris Growth inhibitors produced by the green algae (Volvocaceae) , 1970, Archiv für Mikrobiologie.

[59]  Min Thein Production of Spirulina in Myanmar (Burma) , 1993 .

[60]  Michael A. Borowitzka,et al.  Micro-algal biotechnology. , 1988 .

[61]  Michael A. Borowitzka,et al.  Microalgae for aquaculture: Opportunities and constraints , 1997, Journal of Applied Phycology.

[62]  P. Verity Effects of temperature, irradiance, and daylength on the marine diatom leptocylindrus danicus cleve. I. Photosynthesis and cellular composition , 1981 .

[63]  R. Walmsley,et al.  Mass algal culture in outdoor plastic-covered minipond systems , 1984 .

[64]  Z. Cohen,et al.  Chemicals from Microalgae , 1999 .

[65]  A. Richmond,et al.  CRC Handbook of microalgal mass culture , 1986 .

[66]  Mark Gardner,et al.  The Effectiveness of Hollow Fibre Membranes in Transferring Flue Gas into Microalgal Culture for Sequestration Purposes , 2011 .

[67]  J. Rivas,et al.  Outdoor cultivation of a nitrogen-fixing marine cyanobacterium, Anabaena sp. ATCC 33047. , 2003, Biomolecular engineering.

[68]  C. Gibson,et al.  Photosynthetic characteristics of planktonic blue-green algae: Changes in photosynthetic capacity and pigmentation of Oscillatoria redekei van Goor under high and low light , 1982 .

[69]  M. Borowitzka Commercial production of microalgae: ponds, tanks, tubes and fermenters , 1999 .

[70]  Surendra Singh,et al.  AIRBORNE ALGAE: THEIR PRESENT STATUS AND RELEVANCE 1 , 2007 .

[71]  G. Clément,et al.  Spirulina: ein günstiges Objekt für die Massenkultur von Mikroalgen , 1970 .

[72]  N. Murakami,et al.  Auto-growth inhibitory substance from the fresh-water cyanobacterium Phormidium tenue. , 1993, Chemical & pharmaceutical bulletin.

[73]  E. Laws,et al.  A study of the energetics and economics of microalgal mass culture with the marine chlorophyte Tetraselmis suecica: Implications for use of power plant stack gases , 1991, Biotechnology and bioengineering.

[74]  Carl J. Soeder,et al.  Massive cultivation of microalgae: Results and prospects , 1980, Hydrobiologia.

[75]  M. Borowitzka,et al.  β-Carotene (Provitamin A) Production with Algae , 1989 .

[76]  D. Singh,et al.  Photooxidative damage to the cyanobacterium Spirulina platensis mediated by singlet oxygen , 1995, Current Microbiology.

[77]  Paul Chen,et al.  Effect of light intensity on algal biomass accumulation and biodiesel production for mixotrophic strains Chlorella kessleri and Chlorella protothecoide cultivated in highly concentrated municipal wastewater , 2012, Biotechnology and bioengineering.

[78]  M. Borowitzka Limits to Growth , 1998 .

[79]  Giuseppe Torzillo,et al.  Sub‐optimal morning temperature induces photoinhibition in dense outdoor cultures of the alga Monodus subterraneus (Eustigmatophyta) , 2001 .

[80]  Yuan-Kun Lee,et al.  Supplying CO2 to photosynthetic algal cultures by diffusion through gas-permeable membranes , 1989, Applied Microbiology and Biotechnology.

[81]  P. J. Hansen,et al.  Effects of high pH on the growth and survival of six marine heterotrophic protists , 2003 .

[82]  A. Vonshak,et al.  Environmental stress physiology. , 2007 .

[83]  R. Davies‐Colley,et al.  Advanced pond system: performance with high rate ponds of different depths and areas. , 2003, Water science and technology : a journal of the International Association on Water Pollution Research.

[84]  D. Walker,et al.  Biofuels, facts, fantasy, and feasibility , 2009, Journal of Applied Phycology.

[85]  P. Falkowski,et al.  Respiratory losses in the light in a marine diatom: Measurements by short-term mass spectrometry. [Thalassiosira weisflogii] , 1989 .

[86]  A. Vonshak,et al.  Photoinhibition in outdoor Spirulina platensis cultures assessed by polyphasic chlorophyll fluorescence transients , 1999, Journal of Applied Phycology.

[87]  F. Chen,et al.  Diverse and dynamic populations of cyanobacterial podoviruses in the Chesapeake Bay unveiled through DNA polymerase gene sequences. , 2009, Environmental microbiology.

[88]  H. Iwamoto,et al.  Industrial Production of Microalgal Cell‐Mass and Secondary Products ‐ Major Industrial Species: Chlorella , 2007 .

[89]  Yuk Shan Wong,et al.  Wastewater Treatment with Algae , 1998, Biotechnology Intelligence Unit.

[90]  A. Richmond,et al.  Production of spirulina biomass: Effects of environmental factors and population density , 1982 .

[91]  Yuan-Kun Lee Microalgal mass culture systems and methods: Their limitation and potential , 2001, Journal of Applied Phycology.

[92]  S. Sawayama,et al.  Continuous culture of hydrocarbon-rich microalga Botryococcus braunii in secondarily treated sewage , 1994, Applied Microbiology and Biotechnology.

[93]  R. Andersen,et al.  Algal culturing techniques , 2005 .

[94]  A. Richmond Handbook of microalgal culture: biotechnology and applied phycology. , 2004 .

[95]  M. Bergougnou,et al.  Growth of Spirulina maxima algae in effluents from secondary waste‐water treatment plants , 1974 .

[96]  A. Sacchi,et al.  Effect of temperature on yield and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors , 1991, Journal of Applied Phycology.

[97]  R. Lemus,et al.  Growth ofPhormidium sp. in aerobic secondary piggery waste-water , 1994, Applied Microbiology and Biotechnology.

[98]  Carlos Jiménez,et al.  The Feasibility of industrial production of Spirulina (Arthrospira) in Southern Spain , 2003 .

[99]  S. Mitchell The effect of pH onBrachionus calyciflorus Pallas (Rotifera) , 1992, Hydrobiologia.

[100]  R. Majchrowski,et al.  Dependence of the photosynthesis quantum yield in oceans on environmental factors , 2002 .

[101]  Navid R. Moheimani,et al.  Sustainable biofuels from algae , 2013, Mitigation and Adaptation Strategies for Global Change.

[102]  E. Vandamme Biotechnology of vitamins, pigments, and growth factors , 1989 .

[103]  J. C. Goldman,et al.  Temperature‐influenced species competition in mass cultures of marine phytoplankton , 1976 .

[104]  A. Richmond,et al.  Biological Principles of Mass Cultivation , 2007 .

[105]  J. Myers,et al.  On the Mass Culture of Algae. II. Yield as a Function of Cell Concentration Under Continuous Sunlight Irradiance. , 1959, Plant physiology.

[106]  W. Mulbry,et al.  Algal Turf Scrubbing: Cleaning Surface Waters with Solar Energy while Producing a Biofuel , 2011 .

[107]  J. Raven,et al.  Adaptation, Acclimation and Regulation in Algal Photosynthesis , 2003 .

[108]  P. Mccarthy,et al.  Algae of Australia: introduction. , 2007 .

[109]  V. Loosanoff,et al.  Control of Certain Forms of Zooplankton in Mass Algal Cultures , 1957, Science.

[110]  Q. Hu,et al.  Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor , 1998, Applied Microbiology and Biotechnology.

[111]  J. Doucha,et al.  Novel outdoor thin-layer high density micro algal culture system: Productivity and operational parameters , 1995 .

[112]  John R. Benemann,et al.  Biomass Productivities in Wild Type and Pigment Mutant of Cyclotella sp. (Diatom) , 2009, Applied biochemistry and biotechnology.

[113]  J. Cañavate,et al.  Assessing chemical compounds for controlling predator ciliates in outdoor mass cultures of the green algae Dunaliella salina , 2001 .

[114]  J. Leverenz,et al.  The effects of photoinhibition on the photosynthetic light-response curve of green plant cells (Chlamydomonas reinhardtii) , 1990, Planta.

[115]  A. Mitsui,et al.  Biological Solar Energy Conversion , 1977 .

[116]  J. C. Goldman,et al.  Temperature-influenced variations in speciation and chemical composition of marine phytoplankton in outdoor mass cultures☆ , 1980 .

[117]  J. Grobbelaar,et al.  Respiration losses in planktonic green algae cultivated in raceway ponds , 1985 .

[118]  M. Olaizola,et al.  SHORT‐TERM RESPONSE OF THE DIADINOXANTHIN CYCLE AND FLUORESCENCE YIELD TO HIGH IRRADIANCE IN CHAETOCEROS MUELLERI (BACILLARIOPHYCEAE) 1 , 1994 .

[119]  Hiroshi Tamiya,et al.  Mass Culture of Algae , 1957 .

[120]  Mario R. Tredici,et al.  As integrated culture system for outdoor production of microalgae and cyanobacteria , 1997, Journal of Applied Phycology.

[121]  E. Morris,et al.  Influence of temperature on the relationship between oxygen- and fluorescence-based estimates of photosynthetic parameters in a marine benthic diatom (Cylindrotheca closterium) , 2003 .

[122]  Paola Maria Pedroni,et al.  Enitecnologie R&D project on microalgae biofixation of CO2: Outdoor comparative tests of biomass productivity using flue gas CO2 from a NGCC power plant , 2005 .

[123]  C. Jing,et al.  Growth inhibition of the eight species of microalgae by growth inhibitor from the culture of Isochrysis galbana and its isolation and identification , 2008, Journal of Applied Phycology.

[124]  E. P. Lincoln,et al.  Zooplankton control in mass algal cultures , 1983 .

[125]  R. Wetzel Periphyton of Freshwater Ecosystems , 1983, Developments in Hydrobiology.

[126]  A. Richmond,et al.  Outdoor cultivation of the marine microalga Isochrysis galbana in open reactors , 1988 .

[127]  P. Verity Effects of temperature, irradiance, and daylength on the marine diatom Leptocylindrus danicus Cleve, IV. Growth , 1981 .

[128]  J. Doucha,et al.  Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate , 2006, Journal of Applied Phycology.

[129]  Navid Reza Moheimani,et al.  The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds , 2006, Journal of Applied Phycology.

[130]  J. Haney,et al.  Inhibition of Chlorella growth by degradation and related products of linoleic and linolenic acids and the possible significance of polyunsaturated fatty acids in phytoplankton ecology , 1997, Hydrobiologia.

[131]  J. Beardall,et al.  Photosynthetic performance of outdoor Nannochloropsis mass cultures under a wide range of environmental conditions , 2009 .

[132]  J. Beardall,et al.  Short-term variations in photosynthetic parameters of Nannochloropsis cultures grown in two types of outdoor mass cultivation systems , 2009 .

[133]  J. Noüe,et al.  Influence of agitation and aeration modes on biomass production by Oocystis sp. grown on wastewaters , 1984 .

[134]  A. Richmond,et al.  Optimizing the population density inIsochrysis galbana grown outdoors in a glass column photobioreactor , 1994, Journal of Applied Phycology.

[135]  Phang Siew-Moi Algal Biotechnology in the Asia-Pacific Region , 1994 .

[136]  Z. Su,et al.  An economical device for carbon supplement in large-scale micro-algae production , 2008, Bioprocess and biosystems engineering.

[137]  R. Wijffels,et al.  Growth inhibition of Monodus subterraneus by free fatty acids. , 2008, Biotechnology and bioengineering.

[138]  Navid Reza Moheimani,et al.  Limits to productivity of the alga Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds , 2007, Biotechnology and bioengineering.

[139]  Yutaka Dote,et al.  Growth of the hydrocarbon-rich microalga Botryococcus braunii in secondarily treated sewage , 1992, Applied Microbiology and Biotechnology.

[140]  Hiroyo Matsumoto,et al.  Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler , 1993 .

[141]  Yusuf Chisti,et al.  Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. , 2003 .

[142]  O. Ciferri,et al.  Spirulina, the edible microorganism. , 1983, Microbiological reviews.

[143]  R. Wetzel,et al.  Photorespiration and CO2 compensation point in Najas jlexilis l , 1978 .