Analytic Derivative Methods in Molecular Electronic Structure Theory: A New Dimension to Quantum Chemistry and its Applications to Spectroscopy

During the last four decades, there have been many developments in the field of ab initio variational and nonvariational correlated wavefunctions, including nonvariational (yet size extensive) many-body perturbation theory (MBPT) and coupled-cluster (CC) methods. For these methods to be useful in solving problems in chemistry, analytical derivatives of total energies are almost always required. In this article, we first describe the analytic derivative methods for variational wavefunctions, namely, closed-shell self-consistent field (CLSCF), general restricted open-shell SCF (GRSCF), configuration interaction (CI), and general multiconfiguration SCF (MCSCF). Then we describe the more recent developments in analytic derivative methods, including those for the MBPT and CC wavefunctions. Keywords: ab initio; electronic structure theory; variational wavefunctions; MBPT models; coupled cluster models; analytic derivatives; CPHF equations; CPCI equations; CPMCHF equations

[1]  J. Gauss,et al.  Analytic first and second derivatives for the CCSDT-n (n = 1-3) models : a first step towards the efficient calculation of ccsdt properties , 2000 .

[2]  John D. Watts,et al.  The unitary coupled-cluster approach and molecular properties. Applications of the UCC(4) method , 1989 .

[3]  Alistair P. Rendell,et al.  Analytic gradients for coupled-cluster energies that include noniterative connected triple excitations: Application to cis- and trans-HONO , 1991 .

[4]  P. Pulay Improved SCF convergence acceleration , 1982 .

[5]  H. Schaefer,et al.  Analytic Raman intensities from molecular electronic wave functions , 1986 .

[6]  Jeppe Olsen,et al.  The initial implementation and applications of a general active space coupled cluster method , 2000 .

[7]  Micah L. Abrams,et al.  Important configurations in configuration interaction and coupled-cluster wave functions , 2005 .

[8]  H. Schaefer,et al.  Generalization of analytic energy third derivatives for the RHF closed‐shell wave function: Derivative energy and integral formalisms and the prediction of vibration–rotation interaction constants , 1986 .

[9]  R. Amos,et al.  On the efficient evaluation of analytic energy gradients , 1985 .

[10]  V. Fock,et al.  Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems , 1930 .

[11]  S. Carter,et al.  MULTIMODE: A code to calculate rovibrational energies of polyatomic molecules , 2003 .

[12]  H. Schaefer,et al.  A systematic theoretical study of the harmonic vibrational frequencies for polyatomic molecules: The single, double, and perturbative triple excitation coupled‐cluster [CCSD(T)] method , 1993 .

[13]  Henrik Koch,et al.  Coupled cluster response functions , 1990 .

[14]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[15]  Mihály Kállay,et al.  Computing coupled-cluster wave functions with arbitrary excitations , 2000 .

[16]  Erwin Schrödinger,et al.  Quantisierung als Eigenwertproblem , 1925 .

[17]  T. Crawford,et al.  An Introduction to Coupled Cluster Theory for Computational Chemists , 2007 .

[18]  W. Klopper,et al.  Analytical nuclear gradients for the MP2-R12 method , 2007 .

[19]  W. Pauli,et al.  Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren , 1925 .

[20]  Frederick R. Manby,et al.  R12 methods in explicitly correlated molecular electronic structure theory , 2006 .

[21]  H. Schaefer,et al.  Analytic evaluation and basis set dependence of intensities of infrared spectra , 1986 .

[22]  John F. Stanton,et al.  Analytic second derivatives in high-order many-body perturbation and coupled-cluster theories: Computational considerations and applications , 2000 .

[23]  Ernest R. Davidson,et al.  Matrix Eigenvector Methods , 1983 .

[24]  Mihály Kállay,et al.  Higher excitations in coupled-cluster theory , 2001 .

[25]  J. Gauss,et al.  Analytic energy gradients for the equation‐of‐motion coupled‐cluster method: Implementation and application to the HCN/HNC system , 1994 .

[26]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[27]  Jan Almlöf,et al.  DIRECT METHODS IN ELECTRONIC STRUCTURE THEORY , 1995 .

[28]  H. Schaefer,et al.  Unified theoretical treatment of analytic first and second energy derivatives in open-shell Hartree—Fock theory , 1982 .

[29]  H. Schaefer,et al.  Analytic energy third derivatives for open-shell self-consistent-field wavefunctions , 1986 .

[30]  R. Bartlett,et al.  The coupled‐cluster single, double, triple, and quadruple excitation method , 1992 .

[31]  J. Almlöf,et al.  Principles for a direct SCF approach to LICAO–MOab‐initio calculations , 1982 .

[32]  Trygve Helgaker,et al.  GAUSSIAN BASIS SETS AND MOLECULAR INTEGRALS , 1995 .

[33]  J. Gauss,et al.  Analytical differentiation of the energy contribution due to triple excitations in quadratic configuration interaction theory , 1989 .

[34]  Michael J. Frisch,et al.  A direct MP2 gradient method , 1990 .

[35]  R. Harrison,et al.  Analytic MBPT(2) second derivatives , 1986 .

[36]  R. Bartlett,et al.  Analytic energy gradients for the two-determinant coupled cluster method with application to singlet excited states of butadiene and ozone , 1994 .

[37]  Kazuya Ishimura,et al.  New parallel algorithm for MP2 energy gradient calculations , 2007, J. Comput. Chem..

[38]  Mihály Kállay,et al.  A general state-selective multireference coupled-cluster algorithm , 2002 .

[39]  N. Handy,et al.  Higher analytic derivatives , 1992 .

[40]  Timothy J. Lee,et al.  An efficient formulation and implementation of the analytic energy gradient method to the single and double excitation coupled-cluster wave function - Application to Cl2O2 , 1991 .

[41]  N. Handy,et al.  Full CI calculations on BH, H2O, NH3, and HF , 1983 .

[42]  J. Gauss,et al.  Analytic CCSD(T) second derivatives , 1997 .

[43]  Michael J. Frisch,et al.  Direct analytic SCF second derivatives and electric field properties , 1990 .

[44]  P. Jensen A new morse oscillator-rigid bender internal dynamics (MORBID) Hamiltonian for triatomic molecules , 1988 .

[45]  J. Gauss,et al.  Analytical differentiation of the energy contribution due to triple excitations in fourth-order Møller-Plesset perturbation theory , 1988 .

[46]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[47]  N. Handy,et al.  Implications of unitary invariance for gradient theory , 1992 .

[48]  Michael J. Frisch,et al.  MP2 energy evaluation by direct methods , 1988 .

[49]  H. Schaefer,et al.  High Level ab Initio Quantum Mechanical Predictions of Infrared Intensities , 2002 .

[50]  Per E. M. Siegbahn,et al.  Generalizations of the direct CI method based on the graphical unitary group approach. I. Single replacements from a complete CI root function of any spin, first order wave functions , 1979 .

[51]  P. Knowles,et al.  An efficient internally contracted multiconfiguration–reference configuration interaction method , 1988 .

[52]  John F. Stanton,et al.  Analytic energy gradients for open-shell coupled-cluster singles and doubles (CCSD) calculations using restricted open-shell Hartree—Fock (ROHF) reference functions , 1991 .

[53]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[54]  Hans-Joachim Werner,et al.  A quadratically convergent MCSCF method for the simultaneous optimization of several states , 1981 .

[55]  Wim Klopper,et al.  CC-R12: AN Explicitly Correlated Coupled-Cluster Theory , 1997 .

[56]  Jan Almlöf,et al.  Computational Aspects of Direct SCF and MCSCF Methods , 1984 .

[57]  John F. Stanton,et al.  The equation of motion coupled‐cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties , 1993 .

[58]  Peter J. Knowles,et al.  A new determinant-based full configuration interaction method , 1984 .

[59]  John F. Stanton,et al.  Many‐body methods for excited state potential energy surfaces. I. General theory of energy gradients for the equation‐of‐motion coupled‐cluster method , 1993 .

[60]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[61]  Michael Hanrath,et al.  An exponential multireference wave-function Ansatz. , 2005, The Journal of chemical physics.

[62]  N. Handy,et al.  Higher analytic derivatives. I. A new implementation for the third derivative of the SCF energy , 1991 .

[63]  Guntram Rauhut,et al.  Analytical energy gradients for local coupled-cluster methods , 2001 .

[64]  B. Roos,et al.  A simple method for the evaluation of the second-order-perturbation energy from external double-excitations with a CASSCF reference wavefunction , 1982 .

[65]  Henry F. Schaefer,et al.  A systematic study of molecular vibrational anharmonicity and vibration-rotation interaction by self-consistent-field higher-derivative methods. Linear polyatomic molecules , 1990 .

[66]  Michael J. Frisch,et al.  Semi-direct algorithms for the MP2 energy and gradient , 1990 .

[67]  Rodney J. Bartlett,et al.  COUPLED-CLUSTER THEORY: AN OVERVIEW OF RECENT DEVELOPMENTS , 1995 .

[68]  J. Pople,et al.  Derivative studies in configuration–interaction theory , 1980 .

[69]  B. Roos,et al.  A new method for large-scale Cl calculations , 1972 .

[70]  Jon Baker,et al.  An efficient atomic orbital based second-order Møller-Plesset gradient program. , 2004, The Journal of chemical physics.

[71]  Per E. M. Siegbahn,et al.  A new direct CI method for large CI expansions in a small orbital space , 1984 .

[72]  Rodney J. Bartlett,et al.  Analytic energy derivatives in many‐body methods. I. First derivatives , 1989 .

[73]  J. Gauss Analytic second derivatives for the full coupled-cluster singles, doubles, and triples model: Nuclear magnetic shielding constants for BH, HF, CO, N2, N2O, and O3 , 2002 .

[74]  D. Cremer,et al.  Analytical evaluation of energy gradients in quadratic configuration interaction theory , 1988 .

[75]  J. Gauss,et al.  Analytic Evaluation of Second Derivatives of the Energy: Computational Strategies for the CCSD and CCSD(T) Approximations , 1997 .

[76]  W. Kutzelnigg,et al.  Møller-plesset calculations taking care of the correlation CUSP , 1987 .

[77]  R. Bartlett,et al.  A direct product decomposition approach for symmetry exploitation in many-body methods. I. Energy calculations , 1991 .

[78]  R. Bartlett Analytical Evaluation of Gradients in Coupled-Cluster and Many-Body Perturbation Theory , 1986 .

[79]  J. Pittner,et al.  Analytic gradient for the multireference Brillouin-Wigner coupled cluster method and for the state-universal multireference coupled cluster method. , 2007, The Journal of chemical physics.

[80]  Henry F. Schaefer,et al.  A systematic theoretical study of harmonic vibrational frequencies: The ammonium ion NH4+ and other simple molecules , 1980 .

[81]  P. Jensen Calculation of Molecular Rotation-Vibration Energies Directly from the Potential Energy Function , 1992 .

[82]  R. Bartlett,et al.  Analytic ROHF–MBPT(2) second derivatives , 1992 .

[83]  Debashis Mukherjee,et al.  Applications of a non-perturbative many-body formalism to general open-shell atomic and molecular problems: calculation of the ground and the lowest π-π* singlet and triplet energies and the first ionization potential of trans-butadiene , 1977 .

[84]  Hans-Joachim Werner,et al.  A quadratically convergent multiconfiguration–self‐consistent field method with simultaneous optimization of orbitals and CI coefficients , 1980 .

[85]  N. Handy,et al.  Higher analytic derivatives. IV. Anharmonic effects in the benzene spectrum , 1992 .

[86]  H. Schaefer,et al.  Second-order coupled perturbed hartree—fock equations for closed-shell and open-shell self-consistent-field wavefunctions , 1986 .

[87]  H. Schaefer,et al.  Analytic energy third derivatives for paired‐excited multiconfiguration self‐consistent‐field wave functions , 1989 .

[88]  So Hirata,et al.  High-order coupled-cluster calculations through connected octuple excitations , 2000 .

[89]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .

[90]  G. Scuseria,et al.  A systematic theoretical study of harmonic vibrational frequencies: The single and double excitation coupled cluster (CCSD) method , 1988 .

[91]  B. Roos,et al.  The complete active space SCF (CASSCF) method in a Newton–Raphson formulation with application to the HNO molecule , 1981 .

[92]  Analytical MBPT(4) gradients , 1988 .

[93]  J. Gauss,et al.  Analytic gradients for the coupled-cluster singles, doubles, and triples (CCSDT) model , 2002 .

[94]  V. Saunders Molecular Integrals for Gaussian Type Functions , 1983 .

[95]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .

[96]  H. Schaefer,et al.  The efficient evaluation of configuration interaction analytic energy second derivatives: Application to hydrogen thioperoxide, HSOH , 1986 .

[97]  Curtis L. Janssen,et al.  The automated solution of second quantization equations with applications to the coupled cluster approach , 1991 .

[98]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[99]  Julia E. Rice,et al.  The elimination of singularities in derivative calculations , 1985 .

[100]  Julia E. Rice,et al.  Analytic evaluation of energy gradients for the single and double excitation coupled cluster (CCSD) wave function: Theory and application , 1987 .

[101]  J. Gauss,et al.  Implementation of analytical energy gradients at third- and fourth-order Møller-Plesset perturbation theory , 1987 .

[102]  Guntram Rauhut,et al.  Analytical energy gradients for local second-order Mo/ller–Plesset perturbation theory , 1998 .

[103]  I. Alberts,et al.  Mo/ller–Plesset third order calculations with large basis sets , 1988 .

[104]  John C. Slater,et al.  The Theory of Complex Spectra , 1929 .

[105]  R. Bartlett,et al.  Open-shell analytical energy gradients for triple excitation many-body, coupled-cluster methods: MBPT(4), CCSD+T(CCSD), CCSD(T),and QCISD(T) , 1992 .

[106]  H. Schaefer,et al.  Analytic third derivatives for self‐consistent‐field wave functions , 1984 .

[107]  Gustavo E. Scuseria,et al.  Analytic evaluation of energy gradients for the singles and doubles coupled cluster method including perturbative triple excitations: Theory and applications to FOOF and Cr2 , 1991 .

[108]  P. Siegbahn The Direct CI Method , 1983 .

[109]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[110]  R. Bartlett,et al.  Analytical gradients for the coupled-cluster method† , 1984 .

[111]  H. Monkhorst,et al.  Coupled-cluster method for multideterminantal reference states , 1981 .

[112]  Martin Head-Gordon,et al.  Single-reference theories of molecular excited states with single and double substitutions , 1993 .

[113]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[114]  G. G. Hall The molecular orbital theory of chemical valency VIII. A method of calculating ionization potentials , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[115]  N. Handy,et al.  Higher analytic derivatives. II. The fourth derivative of self‐consistent‐field energy , 1991 .

[116]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[117]  J. Gauss,et al.  Anharmonic force fields from analytic CCSD(T) second derivatives: HOF and F2O , 1999 .

[118]  T. Crawford,et al.  The balance between theoretical method and basis set quality: A systematic study of equilibrium geometries, dipole moments, harmonic vibrational frequencies, and infrared intensities , 1993 .

[119]  N. Handy,et al.  The analytic gradient of the perturbative triplet excitations correction to the Brueckner doubles method , 1991 .

[120]  Clemens C. J. Roothaan,et al.  New Developments in Molecular Orbital Theory , 1951 .

[121]  Mihály Kállay,et al.  Approximate treatment of higher excitations in coupled-cluster theory. , 2005, The Journal of chemical physics.

[122]  G. Scuseria,et al.  Analytic evaluation of energy gradients for the single, double and linearized triple excitation coupled-cluster CCSDT-1 wavefunction: Theory and applications , 1988 .

[123]  R. Bartlett Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry , 1989 .

[124]  Werner Kutzelnigg,et al.  r12-Dependent terms in the wave function as closed sums of partial wave amplitudes for large l , 1985 .

[125]  N. Nakatsuji,et al.  Cluster expansion of the wavefunction. Excited states , 1978 .

[126]  Micah L. Abrams,et al.  General-order single- and multi-reference configuration interaction and coupled-cluster theory: Symmetric dissociation of water , 2005 .

[127]  Ian M. Mills,et al.  Force Constants and Dipole-Moment Derivatives of Molecules from Perturbed Hartree-Fock Calculations. I , 1968 .

[128]  Anna I. Krylov,et al.  Energies and analytic gradients for a coupled-cluster doubles model using variational Brueckner orbitals: Application to symmetry breaking in O4+ , 1998 .

[129]  Martin Head-Gordon,et al.  A method for two-electron Gaussian integral and integral derivative evaluation using recurrence relations , 1988 .

[130]  R. Bartlett,et al.  Third‐order MBPT gradients , 1985 .

[131]  Rodney J. Bartlett,et al.  Theory and application of MBPT(3) gradients: The density approach , 1987 .

[132]  H. Bernhard Schlegel,et al.  Geometry Optimization on Potential Energy Surfaces , 1995 .

[133]  Henry F. Schaefer,et al.  Analytic second derivative techniques for self-consistent-field wave functions. A new approach to the solution of the coupled perturbed hartree-fock equations , 1983 .

[134]  Shigeru Obara,et al.  Efficient recursive computation of molecular integrals over Cartesian Gaussian functions , 1986 .

[135]  S. Hirata Tensor Contraction Engine: Abstraction and Automated Parallel Implementation of Configuration-Interaction, Coupled-Cluster, and Many-Body Perturbation Theories , 2003 .

[136]  R. Bartlett,et al.  Harmonic vibrational frequencies and infrared intensities from analytic fourth‐order many‐body perturbation theory gradients , 1991 .

[137]  Per E. M. Siegbahn,et al.  Generalizations of the direct CI method based on the graphical unitary group approach. II. Single and double replacements from any set of reference configurations , 1980 .

[138]  Mihály Kállay,et al.  Analytic evaluation of Raman intensities in coupled-cluster theory , 2007 .

[139]  Jürgen Gauss,et al.  Analytic second derivatives for general coupled-cluster and configuration-interaction models. , 2003, The Journal of chemical physics.

[140]  C. C. J. Roothaan,et al.  Self-Consistent Field Theory for Open Shells of Electronic Systems , 1960 .

[141]  Francesco A Evangelista,et al.  High-order excitations in state-universal and state-specific multireference coupled cluster theories: model systems. , 2006, The Journal of chemical physics.

[142]  Bernard R. Brooks,et al.  Analytic gradients from correlated wave functions via the two‐particle density matrix and the unitary group approach , 1980 .

[143]  R. Bartlett,et al.  Analytical gradient evaluation in coupled-cluster theory , 1985 .

[144]  Michel Dupuis,et al.  Evaluation of molecular integrals over Gaussian basis functions , 1976 .

[145]  Frederick R Manby,et al.  Analytical energy gradients for local second-order Møller-Plesset perturbation theory using density fitting approximations. , 2004, The Journal of chemical physics.

[146]  Francesco A Evangelista,et al.  Coupling term derivation and general implementation of state-specific multireference coupled cluster theories. , 2007, The Journal of chemical physics.

[147]  Trygve Helgaker,et al.  Coupled cluster energy derivatives. Analytic Hessian for the closed‐shell coupled cluster singles and doubles wave function: Theory and applications , 1990 .

[148]  H. Schaefer,et al.  A New dimension to quantum chemistry: Theoretical methods for the analytic evaluation of first, second, and third derivatives of the molecular electronic energy with respect to nuclear coordinates , 1986 .

[149]  R. Bartlett,et al.  Techniques Used in Evaluating Orbital and Wavefunction Coefficients and Property Derivatives — eg The Evaluation of M(B)P(T)-2 Second Derivatives , 1986 .

[150]  Hideo Sekino,et al.  A linear response, coupled‐cluster theory for excitation energy , 1984 .

[151]  H. Schaefer,et al.  Analytical energy third derivatives for two-configuration self-consistent-field wavefunctions , 1988 .

[152]  Mihály Kállay,et al.  Coupled-cluster methods including noniterative corrections for quadruple excitations. , 2005, The Journal of chemical physics.

[153]  P. Pulay Analytical Derivative Techniques and the Calculation of Vibrational Spectra , 1995 .

[154]  Henry F. Schaefer,et al.  Accelerating the convergence of the coupled-cluster approach: The use of the DIIS method , 1986 .

[155]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[156]  Uttam Sinha Mahapatra,et al.  A state-specific multi-reference coupled cluster formalism with molecular applications , 1998 .

[157]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[158]  Mark S. Gordon,et al.  Analytic energy gradients for multiconfigurational self-consistent field second-order quasidegenerate perturbation theory (MC-QDPT) , 1998 .

[159]  Michael J. Frisch,et al.  Gradient theory applied to the Brueckner doubles method , 1991 .

[160]  T. Crawford,et al.  Some surprising failures of Brueckner coupled cluster theory , 2000 .

[161]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[162]  W. Heisenberg,et al.  Zur Quantentheorie der Molekeln , 1924 .

[163]  Gustavo E. Scuseria,et al.  The open-shell restricted Hartree—Fock singles and doubles coupled-cluster method including triple excitations CCSD (T): application to C+3 , 1991 .

[164]  R. Bartlett,et al.  Coupled‐cluster open‐shell analytic gradients: Implementation of the direct product decomposition approach in energy gradient calculations , 1991 .

[165]  Jeppe Olsen,et al.  Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces , 1988 .

[166]  K. Hirao,et al.  Cluster expansion of the wave function. Electron correlations in the ground state, valence and Rydberg excited states, ionized states, and electron attached states of formaldehyde by SAC and SAC–CI theories , 1981 .

[167]  Kimihiko Hirao,et al.  ANALYTIC ENERGY GRADIENTS FOR SECOND-ORDER MULTIREFERENCE PERTURBATION THEORY , 1999 .

[168]  Jürgen Gauss,et al.  Triple excitations in state-specific multireference coupled cluster theory: application of Mk-MRCCSDT and Mk-MRCCSDT-n methods to model systems. , 2008, The Journal of chemical physics.

[169]  K. Hirao,et al.  Cluster expansion of the wave function. Electron correlations in singlet and triplet excited states, ionized states, and electron attached states by SAC and SAC–CI theories† , 1981 .

[170]  So Hirata,et al.  Higher-order equation-of-motion coupled-cluster methods. , 2004, The Journal of chemical physics.

[171]  Henry F. Schaefer,et al.  On the evaluation of analytic energy derivatives for correlated wave functions , 1984 .

[172]  D. Hartree The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[173]  Henry F. Schaefer,et al.  Analytic energy second derivatives for open-shell two-configuration self-consistent-field wave functions: application to carbyne and silyne least-motion insertion reactions , 1988 .

[174]  B. Brooks,et al.  The graphical unitary group approach to the electron correlation problem. Methods and preliminary applications , 1979 .

[175]  Peter Pulay,et al.  Systematic AB Initio Gradient Calculation of Molecular Geometries, Force Constants, and Dipole Moment Derivatives , 1979 .

[176]  Debashis Mukherjee,et al.  Application of linear response theory in a coupled cluster framework for the calculation of ionization potentials , 1981 .

[177]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[178]  Kerstin Andersson,et al.  Multiconfigurational second-order perturbation theory , 1995 .

[179]  Hans-Joachim Werner,et al.  Analytical energy gradients for internally contracted second-order multireference perturbation theory , 2003 .

[180]  R. Bartlett,et al.  Coupled-cluster, unitary coupled-cluster and MBPT(4) open-shell analytical gradient methods , 1989 .

[181]  R. Bartlett,et al.  Analytic evaluation of second derivatives using second-order many-body perturbation theory and unrestricted Hartree-Fock reference functions , 1992 .

[182]  The Chemical Applicability of Standard Methods Inab Initiomolecular Quantum Mechanics , 1995 .

[183]  Michael J. McGuire,et al.  Recent advances in electronic structure theory: Method of moments of coupled-cluster equations and renormalized coupled-cluster approaches , 2002 .

[184]  H. Schaefer,et al.  The analytic configuration interaction gradient method: Application to the cyclic and open isomers of the S3 molecule , 1986 .

[185]  W. Thiel,et al.  Anharmonic force fields from analytic second derivatives: Method and application to methyl bromide , 1989 .